CROSS-DOMAIN FEW-SHOT CLASSIFICATION VIA INTER-SOURCE STYLIZATION

被引:1
|
作者
Xu, Huali [1 ]
Zhi, Shuaifeng [2 ]
Liu, Li [1 ,2 ]
机构
[1] Univ Oulu, Ctr Machine Vis & Signal Anal CMVS, Oulu, Finland
[2] Natl Univ Def Technol, Coll Elect Sci, Changsha, Peoples R China
基金
芬兰科学院; 国家重点研发计划;
关键词
Few-shot classification; Cross-domain few-shot classification; Inter-source stylization;
D O I
10.1109/ICIP49359.2023.10222701
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The goal of Cross-Domain Few-Shot Classification (CDFSC) is to accurately classify a target dataset with limited labelled data by exploiting the knowledge of a richly labelled auxiliary dataset, despite the differences between the domains of the two datasets. Some existing approaches require labelled samples from multiple domains for model training. However, these methods fail when the sample labels are scarce. To overcome this challenge, this paper proposes a solution that makes use of multiple source domains without the need for additional labeling costs. Specifically, one of the source domains is completely tagged, while the others are untagged. An Inter-Source Stylization Network (ISSNet) is then introduced to enhance stylisation across multiple source domains, enriching data distribution and model's generalization capabilities. Experiments on 8 target datasets show that ISSNet leverages unlabelled data from multiple source data and significantly reduces the negative impact of domain gaps on classification performance compared to several baseline methods.
引用
收藏
页码:565 / 569
页数:5
相关论文
共 50 条
  • [1] Cross-Domain Few-Shot Graph Classification
    Hassani, Kaveh
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 6856 - 6864
  • [2] Cross-Domain Few-Shot Classification via Adversarial Task Augmentation
    Wang, Haoqing
    Deng, Zhi-Hong
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1075 - 1081
  • [3] Adversarial Feature Augmentation for Cross-domain Few-Shot Classification
    Hu, Yanxu
    Ma, Andy J.
    [J]. COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 20 - 37
  • [4] Experiments in cross-domain few-shot learning for image classification
    Wang, Hongyu
    Gouk, Henry
    Fraser, Huon
    Frank, Eibe
    Pfahringer, Bernhard
    Mayo, Michael
    Holmes, Geoffrey
    [J]. JOURNAL OF THE ROYAL SOCIETY OF NEW ZEALAND, 2023, 53 (01) : 169 - 191
  • [5] Few-shot Image Generation via Cross-domain Correspondence
    Ojha, Utkarsh
    Li, Yijun
    Lu, Jingwan
    Efros, Alexei A.
    Lee, Yong Jae
    Shechtman, Eli
    Zhang, Richard
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 10738 - 10747
  • [6] Cross-Domain Few-Shot Classification via Dense-Sparse-Dense Regularization
    Ji, Fanfan
    Chen, Yunpeng
    Liu, Luoqi
    Yuan, Xiao-Tong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1352 - 1363
  • [7] Domain Mapping Network for Remote Sensing Cross-Domain Few-Shot Classification
    Lu, Xiaoqiang
    Gong, Tengfei
    Zheng, Xiangtao
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 11
  • [8] Cross-Domain Few-Shot Semantic Segmentation
    Lei, Shuo
    Zhang, Xuchao
    He, Jianfeng
    Chen, Fanglan
    Du, Bowen
    Lu, Chang-Tien
    [J]. COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 73 - 90
  • [9] Cross-Domain Few-Shot Contrastive Learning for Hyperspectral Images Classification
    Zhang, Suhua
    Chen, Zhikui
    Wang, Dan
    Wang, Z. Jane
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [10] CDFM: A cross-domain few-shot model for marine plankton classification
    Guo, Jin
    Li, Wengen
    Guan, Jihong
    Gao, Hang
    Liu, Baobo
    Gong, Lili
    [J]. IET COMPUTER VISION, 2023, 17 (01) : 111 - 121