Cross-Domain Few-Shot Classification via Dense-Sparse-Dense Regularization

被引:1
|
作者
Ji, Fanfan [1 ]
Chen, Yunpeng [2 ]
Liu, Luoqi [2 ]
Yuan, Xiao-Tong [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Engn Res Ctr Digital Forens, Minist Educ, Nanjing 210044, Peoples R China
[2] Meitu Inc, Meitu Imaging & Vis Lab, Xiamen 361008, Peoples R China
关键词
Cross-domain few-shot classification; dense-sparse-dense; regularization training;
D O I
10.1109/TCSVT.2023.3294332
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work addresses the problem of cross-domain few-shot classification which aims at recognizing novel categories in unseen domains with only a few labeled data samples. We think that the pre-trained model contains the redundant elements which are useless or even harmful for the downstream tasks. To remedy the drawback, we introduce an L-2-SP regularized dense-sparse-dense (DSD) fine-tuning flow for regularizing the capacity of pre-trained networks and achieving efficient few-shot domain adaptation. Given a pre-trained model from the source domain, we start by carrying out a conventional dense fine-tuning step using the target data. Then we execute a sparse pruning step that prunes the unimportant connections and fine-tunes the weights of sub-network. Finally, initialized with the fine-tuned sub-network, we retrain the original dense network as the output model for the target domain. The whole fine-tuning procedure is regularized by an L-2-SP term. In contrast to the existing methods that either tune the weights or prune the network structure for domain adaptation, our regularized DSD fine-tuning flow simultaneously exploits the benefits of sparsity regularity and dense network capacity to gain the best of both worlds. Our method can be applied in a plug-and-play manner to improve the existing fine-tuning methods. Extensive experimental results on benchmark datasets demonstrate that our method in many cases outperforms the existing cross-domain few-shot classification methods in significant margins. Our code will be released soon.
引用
收藏
页码:1352 / 1363
页数:12
相关论文
共 50 条
  • [1] Cross-Domain Few-Shot Graph Classification
    Hassani, Kaveh
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 6856 - 6864
  • [2] Cross-Domain Few-Shot Classification via Adversarial Task Augmentation
    Wang, Haoqing
    Deng, Zhi-Hong
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1075 - 1081
  • [3] CROSS-DOMAIN FEW-SHOT CLASSIFICATION VIA INTER-SOURCE STYLIZATION
    Xu, Huali
    Zhi, Shuaifeng
    Liu, Li
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 565 - 569
  • [4] Adversarial Feature Augmentation for Cross-domain Few-Shot Classification
    Hu, Yanxu
    Ma, Andy J.
    [J]. COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 20 - 37
  • [5] Experiments in cross-domain few-shot learning for image classification
    Wang, Hongyu
    Gouk, Henry
    Fraser, Huon
    Frank, Eibe
    Pfahringer, Bernhard
    Mayo, Michael
    Holmes, Geoffrey
    [J]. JOURNAL OF THE ROYAL SOCIETY OF NEW ZEALAND, 2023, 53 (01) : 169 - 191
  • [6] Dense Classification and Implanting for Few-Shot Learning
    Lifchitz, Yann
    Avrithis, Yannis
    Picard, Sylvaine
    Bursuc, Andrei
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9250 - 9259
  • [7] Few-shot Image Generation via Cross-domain Correspondence
    Ojha, Utkarsh
    Li, Yijun
    Lu, Jingwan
    Efros, Alexei A.
    Lee, Yong Jae
    Shechtman, Eli
    Zhang, Richard
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 10738 - 10747
  • [8] Domain Mapping Network for Remote Sensing Cross-Domain Few-Shot Classification
    Lu, Xiaoqiang
    Gong, Tengfei
    Zheng, Xiangtao
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 11
  • [9] Cross-Domain Few-Shot Semantic Segmentation
    Lei, Shuo
    Zhang, Xuchao
    He, Jianfeng
    Chen, Fanglan
    Du, Bowen
    Lu, Chang-Tien
    [J]. COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 73 - 90
  • [10] Cross-Domain Few-Shot Contrastive Learning for Hyperspectral Images Classification
    Zhang, Suhua
    Chen, Zhikui
    Wang, Dan
    Wang, Z. Jane
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19