Key Issues and Strategies of Aqueous Zinc-Ion Batteries

被引:1
|
作者
Liu, Yi [1 ,2 ]
Wang, Huibo [3 ]
Li, Qingyuan [4 ]
Zhou, Lingfeng [4 ]
Zhao, Pengjun [1 ]
Holze, Rudolf [2 ,5 ,6 ,7 ]
机构
[1] Xinjiang Tech Inst Phys & Chem CAS, Key Lab Funct Mat & Devices Special Environm CAS, Xinjiang Key Lab Elect Informat Mat & Devices, Urumqi 830011, Peoples R China
[2] Tech Univ Chemnitz, D-09107 Chemnitz, Germany
[3] Fuzhou Univ, Coll Chem Engn, Fuzhou 350116, Peoples R China
[4] West Virginia Univ, Benjamin M Statler Coll Engn & Mineral Resources, Mech & Aerosp Engn Dept, Morgantown, WV 26506 USA
[5] Southeast Univ, Sch Energy & Environm, Confucius Energy Storage Lab, Nanjing 210096, Peoples R China
[6] St Petersburg State Univ, Inst Chem, Dept Electrochem, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
[7] Nanjing Tech Univ, Sch Energy Sci & Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
关键词
aqueous zinc ion batteries; Zn anode; surface engineering; electrolyte modification; 3D structural skeleton; alloy strategies; DEEP EUTECTIC SOLVENTS; METAL ANODES; ELECTROLYTE; DENDRITE; CHEMISTRY; DESIGN; DEPOSITION; CHALLENGES; ALLOY; LIFE;
D O I
10.3390/en16217443
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the rapid growth of the world population and the further industrialization of modern society, the demand for energy continues to rise sharply. Hence, the development of alternative, renewable, and clean energy sources is urgently needed to address the impending energy crisis. Rechargeable aqueous zinc-ion batteries are drawing increased attention and are regarded as the most promising candidates for large-scale energy storage systems. However, some challenges exist for both the anode and cathode, severely restricting the practical application of ZIBs. In this review, we focus on the issues related to the anode (such as dendrites growth, hydrogen evolution, and surface passivation). We discuss the causes of these challenges and summarize the strategies (such as surface engineering, electrolyte modification, and 3D structural skeleton and alloying) to overcome them. Finally, we discuss future opportunities and challenges of ZIBs regarding the Zn anode.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Design Strategies for Vanadium-based Aqueous Zinc-Ion Batteries
    Wan, Fang
    Niu, Zhiqiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (46) : 16358 - 16367
  • [32] Aqueous zinc-ion batteries at extreme temperature: Mechanisms, challenges, and strategies
    Chen, Minghua
    Xie, Shian
    Zhao, Xingyu
    Zhou, Wanhai
    Li, Yu
    Zhang, Jiawei
    Chen, Zhen
    Chao, Dongliang
    ENERGY STORAGE MATERIALS, 2022, 51 : 683 - 718
  • [33] Designing Advanced Aqueous Zinc-Ion Batteries: Principles, Strategies, and Perspectives
    Li, Yan
    Wang, Zhouhao
    Cai, Yi
    Pam, Mei Er
    Yang, Yingkui
    Zhang, Daohong
    Wang, Ye
    Huang, Shaozhuan
    ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (03) : 823 - 851
  • [34] Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review
    Xie, Chunlin
    Li, Yihu
    Wang, Qi
    Sun, Dan
    Tang, Yougen
    Wang, Haiyan
    CARBON ENERGY, 2020, 2 (04) : 540 - 560
  • [35] Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc-ion Batteries
    Canpeng Li
    Xuesong Xie
    Shuquan Liang
    Jiang Zhou
    Energy & Environmental Materials, 2020, 3 (02) : 146 - 159
  • [36] Comparative Review on the Aqueous Zinc-Ion Batteries (AZIBs) and Flexible Zinc-Ion Batteries (FZIBs)
    Al-Amin, Md
    Islam, Saiful
    Shibly, Sayed Ul Alam
    Iffat, Samia
    NANOMATERIALS, 2022, 12 (22)
  • [37] Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries
    Liu, Chaofeng
    Tian, Meng
    Wang, Mingshan
    Zheng, Jiqi
    Wang, Shuhua
    Yan, Mengyu
    Wang, Zhaojie
    Yin, Zhengmao
    Yang, Jihui
    Cao, Guozhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (16) : 7713 - 7723
  • [38] Zinc-Ion Storage Mechanism of Polyaniline for Rechargeable Aqueous Zinc-Ion Batteries
    Gong, Jiangfeng
    Li, Hao
    Zhang, Kaixiao
    Zhang, Zhupeng
    Cao, Jie
    Shao, Zhibin
    Tang, Chunmei
    Fu, Shaojie
    Wang, Qianjin
    Wu, Xiang
    NANOMATERIALS, 2022, 12 (09)
  • [39] Challenges and protective strategies on zinc anode toward practical aqueous zinc-ion batteries
    Al-Abbasi, Malek
    Zhao, Yanrui
    He, Honggang
    Liu, Hui
    Xia, Huarong
    Zhu, Tianxue
    Wang, Kexuan
    Xu, Zhu
    Wang, Huibo
    Zhang, Wei
    Lai, Yuekun
    Ge, Mingzheng
    CARBON NEUTRALIZATION, 2024, 3 (01): : 108 - 141
  • [40] The phosphate cathodes for aqueous zinc-ion batteries
    Li, Xi
    Chen, Zhenjie
    Yang, Yongqiang
    Liang, Shuquan
    Lu, Bingan
    Zhou, Jiang
    INORGANIC CHEMISTRY FRONTIERS, 2022, 9 (16) : 3986 - 3998