Low-temperature sintering PZT-based ceramics for extreme condition application

被引:5
|
作者
Li, Haiying [1 ]
Fang, Bijun [1 ]
Zhang, Shuai [1 ]
Lu, Xiaolong [1 ]
Ding, Jianning [1 ,2 ]
机构
[1] Changzhou Univ, Jiangsu Collaborat Innovat Ctr Photovolta Sci & En, Jiangsu Prov Cultivat Base State Key Lab Photovolt, Natl Expt Demonstrat,Ctr Mat Sci & Engn,Sch Mat Sc, Changzhou 213164, Peoples R China
[2] Yangzhou Univ, Sch Mech Engn, Yangzhou 225127, Peoples R China
关键词
PHASE-TRANSITION; PIEZOELECTRIC PROPERTIES; ELECTRICAL-PROPERTIES; SOLID-SOLUTIONS; PERFORMANCE; CRYSTALS;
D O I
10.1007/s10854-023-11409-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ba(Cu0.5W0.5)O3 (BaCW)-doped (1-x)Pb(Zr0.5Ti0.5)O3-x(Bi0.5Na0.5)ZrO3 [(1-x)PZT-xBNZ, x = 0.025-0.1] ceramics were prepared by solid-state reaction method. Low-temperature sintering is realized at around 1000 degrees C sintering temperature due to adding BaCW sintering aid and (Bi0.5Na0.5)ZrO3 (BNZ) second component. All low-temperature sintered BaCW-doped (1-x)PZT-xBNZ ceramics exhibit pure perovskite structure, in which the structure changes successively from tetragonal, across morphotropic phase boundary (MPB) and to rhombohedral with increasing the BNZ content. All samples have large density, high resistivity, and rather uniform morphology with decreased grain size. All ceramics present apparent relaxation characteristic, and the MPB effect is confirmed by dielectric, ferroelectric, and piezoelectric performance characterization, whereas extremum performance appears at different compositions. High Curie temperature (TC) with acceptable piezoelectricity (d33) is obtained in the BaCW-doped (1-x)PZT-xBNZ system prepared by low-temperature sintering technique, i.e., the 1000 degrees C sintered 2 wt% BaCW-doped 0.9PZT-0.1BNZ having d33 = 209 pC/N with TC = 281 degrees C, and 0.95PZT-0.05BNZ having d33 = 151 pC/N with TC = 345 degrees C, which present broad application possibility in piezoelectric-related fields under extreme condition.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] LOW-TEMPERATURE SINTERING OF LEAD-BASED PIEZOELECTRIC CERAMICS
    GUI, ZL
    GAO, SH
    ZHANG, XW
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1989, 72 (03) : 486 - 491
  • [23] Low-temperature sintering of MnO2-doped PZT-PZN piezoelectric ceramics
    Lee, Sung-Mi
    Lee, Seung-Ho
    Yoon, Chang-Bun
    Kim, Hyoun-Ee
    Lee, Kyung-Woo
    JOURNAL OF ELECTROCERAMICS, 2007, 18 (3-4) : 311 - 315
  • [24] Low-temperature sintering and electrical properties of PGO-doped PNN-PZT ceramics
    Kim, Jong Min
    Kim, Jeong Seog
    Cheon, Chae Il
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2011, 12 (01): : 12 - 15
  • [25] PZT-BASED PIEZOELECTRIC CERAMICS WITH COMPLEX STRUCTURES
    CHEN, XM
    YANG, JS
    MATERIALS LETTERS, 1995, 25 (1-2) : 53 - 55
  • [26] Ferroelastic behavior of PZT-based ferroelectric ceramics
    Clausen, B
    Rogan, RC
    Üstundag, E
    Daymond, MR
    Knoblauch, V
    ECRS 6: PROCEEDINGS OF THE 6TH EUROPEAN CONFERENCE ON RESIDUAL STRESSES, 2002, 404-7 : 413 - 418
  • [27] Thermal properties of PZT-based ferroelectric ceramics
    Kallaev, S. N.
    Gadzhiev, G. G.
    Kamilov, I. K.
    Ornarov, Z. M.
    Sadykov, S. A.
    Reznichenko, L. A.
    PHYSICS OF THE SOLID STATE, 2006, 48 (06) : 1169 - 1170
  • [28] Thermal properties of PZT-based ferroelectric ceramics
    S. N. Kallaev
    G. G. Gadzhiev
    I. K. Kamilov
    Z. M. Omarov
    S. A. Sadykov
    L. A. Reznichenko
    Physics of the Solid State, 2006, 48 : 1169 - 1170
  • [29] Low temperature sintering of PZT ceramics using a glass additive
    Tandon, RP
    Singh, V
    Narayanaswami, N
    Hans, VK
    FERROELECTRICS, 1997, 196 (1-4) : 437 - 440
  • [30] LOW-TEMPERATURE SINTERING OF ZIRCONIA CERAMICS.
    Torii, Hideo
    Yahaku, Satoru
    Okinaka, Hideyuki
    Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1986, 33 (02): : 98 - 102