Bounds on Relative Distance in the J2 Problem

被引:0
|
作者
Nie, Tao [1 ]
机构
[1] Beijing Inst Technol, Beijing 100081, Peoples R China
关键词
Nodal Precession; Space Debris; Mathematical Analysis; Relative Distance; Collision Risk Modeling Tool; Minimum Distance; J2; Perturbation; MOTION; METRICS;
D O I
10.2514/1.G007579
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
引用
收藏
页码:165 / 174
页数:10
相关论文
共 50 条
  • [21] 末日(J2)
    陈雅茹
    课堂内外创新作文(高中版), 2015, (12) : 31 - 31
  • [22] EIGENVALUES OF J2
    BROWNSTEIN, KR
    AMERICAN JOURNAL OF PHYSICS, 1979, 47 (09) : 809 - 810
  • [23] A multi-angle averaging theorem applied to the J2 problem
    Cucu-Dumitrescu, C
    Selaru, D
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1997, 69 (03): : 255 - 270
  • [24] J2 invariant perturbation conditions for the relative movement for satellites in formation flying
    Meng, Xin
    Li, Junfeng
    Gao, Yunfeng
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2004, 44 (02): : 219 - 223
  • [25] A NONCANONICAL ANALYTIC SOLUTION TO THE J2 PERTURBED 2-BODY PROBLEM
    JEZEWSKI, DJ
    CELESTIAL MECHANICS, 1983, 30 (04): : 343 - 361
  • [26] Stability of Nonclassical Relative Equilibria of a Rigid Body in a J2 Gravity Field
    Wang, Yue
    Xu, Shijie
    JOURNAL OF AEROSPACE ENGINEERING, 2016, 29 (06)
  • [27] Nonlinear dynamic modeling of satellite relative motion with differential J2 and drag
    Vijayan, Ria
    Bilal, Mohd
    Schilling, Klaus
    2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
  • [29] A Multi-Angle Averaging Theorem Applied to the J2 Problem
    Cătălin Cucu-Dumitrescu
    Dan Şelaru
    Celestial Mechanics and Dynamical Astronomy, 1997, 69 : 255 - 270
  • [30] Tangent Orbital Rendezvous Using Linear Relative Motion with J2 Perturbations
    Zhang, Gang
    Wang, Dongzhe
    Cao, Xibin
    Sun, Zhaowei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013