Viable wormhole solution in Bopp-Podolsky electrodynamics

被引:3
|
作者
Frizo, D. A. [1 ]
de Melo, C. A. M. [2 ]
Medeiros, L. G. [3 ]
Neves, Juliano C. S. [2 ]
机构
[1] Univ Fed ABC, Ctr Matemat Comp & Cognicao, Ave Estados 5001, BR-09210580 Santo Andre, SP, Brazil
[2] Univ Fed Alfenas, Inst Ciencia & Tecnol, Rodovia Jose Aurelio Vilela 11999, BR-37715400 Pocos De Caldas, MG, Brazil
[3] Univ Fed Rio Grande do Norte, Escola Ciencia & Tecnol, Campus Univ S-N, BR-59078970 Natal, RN, Brazil
关键词
Wormhole solution; Bopp-Podolsky electrodynamics; Energy conditions; Wormhole shadow; ROTATING REGULAR METRICS; TELESCOPE RESULTS. VI; BLACK-HOLES; SHADOW; MASS; I;
D O I
10.1016/j.aop.2023.169411
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Following a recent approach in which the gravitational field equations in curved spacetimes were presented in the Bopp- Podolsky electrodynamics, we obtained an approximate and spherically symmetric wormhole solution in this context. The calculations were carried out up to the linear approximation in both the spacetime geometry and the radial electric field. The solution presents a new parameter, that comes from the Lagrangian of the model. Such a parameter was constrained by using the shadow radius of Sagittarius A*, recently revealed by the Event Horizon Telescope Collaboration. Remarkably, the wormhole presented here is viable when its shadow is compared to the Sagittarius A* shadow. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Nehari type ground state solution for schrÖdinger-bopp-podolsky system
    Li, Lin
    Tang, Xianhua
    1600, Politechnica University of Bucharest, Splaiul Independentei 313 - Sector 6, Bucharest, 77206, Romania (82): : 139 - 152
  • [22] THE CASIMIR EFFECT IN THE ELECTRODYNAMICS OF PODOLSKY
    Blazhyevska, M.
    JOURNAL OF PHYSICAL STUDIES, 2012, 16 (03):
  • [23] The existence of nontrivial solution of a class of Schrodinger-Bopp-Podolsky system with critical growth
    Yang, Jie
    Chen, Haibo
    Liu, Senli
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [24] Existence of a positive bound state solution for the nonlinear Schrodinger-Bopp-Podolsky system
    Teng, Kaimin
    Yan, Yunxia
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2021, (04) : 1 - 19
  • [25] The existence of nontrivial solution of a class of Schrödinger–Bopp–Podolsky system with critical growth
    Jie Yang
    Haibo Chen
    Senli Liu
    Boundary Value Problems, 2020
  • [26] THE CANONICAL STRUCTURE OF PODOLSKY GENERALIZED ELECTRODYNAMICS
    GALVAO, CAP
    PIMENTEL, BM
    CANADIAN JOURNAL OF PHYSICS, 1988, 66 (05) : 460 - 466
  • [27] Multiplicity of solutions for Schrodinger-Bopp-Podolsky systems
    Jia, Chun-Rong
    Li, Lin
    Chen, Shang-Jie
    O'Regan, Donal
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (01) : 47 - 58
  • [28] Bopp–Podolsky black holes and the no-hair theorem
    R. R. Cuzinatto
    C. A. M. de Melo
    L. G. Medeiros
    B. M. Pimentel
    P. J. Pompeia
    The European Physical Journal C, 2018, 78
  • [29] Existence and asymptotic behaviour of positive ground state solution for critical Schrodinger-Bopp-Podolsky system
    Liu, Senli
    Chen, Haibo
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (06): : 2138 - 2164
  • [30] Podolsky electrodynamics from a condensation of topological defects
    Granado, D. R.
    Carvalho, A. J. G.
    Petrov, A. Yu
    Porfirio, P. J.
    EPL, 2020, 129 (05)