Visual Loop Closure Detection Based on SqueezeNet Multi-layer Feature Fusion and Adaptive Range Matching Algorithm

被引:1
|
作者
Hu, Zhengnan [1 ]
Hu, Likun [1 ]
机构
[1] Guangxi Univ, Sch Elect Engn, Nanning 530004, Peoples R China
关键词
Loop closure detection; SqueezeNet; Feature fusion; Feature matching; Visual SLAM; SCALE; SLAM; BAGS; CNN;
D O I
10.1007/s10846-023-01912-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Loop closure detection(LCD) is an essential part of the visual SLAM system, which can reduce the cumulative error caused by drift. LCD based on traditional methods adopts artificially designed image features. However, this method lacks semantic information and is vulnerable to the external lighting environment. Aiming at the problem of missing information in the image feature representation of LCD, this article proposes a feature extraction method based on multi-layer feature fusion of the lightweight network SqueezeNet. This method can reduce the loss of location and detail information and significantly improve the feature-matching accuracy and extraction rate. Then we employ the nonlinear KPCA method to reduce the dimension of the extracted image feature vectors. In addition, in order to prevent the error matching of adjacent images and the long matching time, we propose an adaptive range matching algorithm, which adaptively limits the matching range in the matching feature stage and jumps out of unnecessary candidate ranges by setting corresponding thresholds and dictionaries of candidate key frames. It not only improves the accuracy of LCD but also dramatically reduces the matching time. The extensive experiments on relevant datasets show that the proposed method has higher accuracy and rate than other methods of CNNs, achieving better robustness and real-time requirements and proving the method's effectiveness for LCD.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A visual SLAM algorithm based on adaptive inertial navigation assistant feature matching
    Jia X.
    Zhao D.
    Zhang L.
    Xiao G.
    Xu Q.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2023, 31 (05): : 621 - 630
  • [42] Facial Expression Analysis Based on Fusion Multi-Layer Convolutional Layer Feature Neural Network
    Meng, Hao
    Yuan, Fei
    Yan, Tianhao
    FUZZY SYSTEMS AND DATA MINING VI, 2020, 331 : 43 - 51
  • [43] Loop Closure Detection Algorithm Based on Convolutional Autoencoder Fused with Gist Feature
    Qiu Chenli
    Huang Dongzhen
    Liu Huawei
    Yuan Xiaobing
    Li Baoqing
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (18)
  • [44] Research on flame detection algorithm based on multi - feature fusion
    Wang, Xipeng
    Li, Yong
    Li, Zhi
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 184 - 189
  • [45] Attention Based Multi-Layer Fusion of Multispectral Images for Pedestrian Detection
    Zhang, Yongtao
    Yin, Zhishuai
    Nie, Linzhen
    Huang, Song
    IEEE ACCESS, 2020, 8 : 165071 - 165084
  • [46] Steel surface defect detection based on multi-layer fusion networks
    Li, Hanlin
    Liu, Ming
    Yin, Yanfang
    Sun, Weiliang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [47] Small infrared target detection based on multi-layer data fusion
    School of Electronics and Information Engineering, Hebei University of Technology, Tianjin, China
    J. Inf. Comput. Sci., 9 (3505-3517):
  • [48] A Robust Rating Prediction Model for Recommendation Systems Based on Fake User Detection and Multi-Layer Feature Fusion
    Han, Zhigeng
    Zhou, Ting
    Chen, Geng
    Chen, Jian
    Fu, Chunshuo
    BIG DATA MINING AND ANALYTICS, 2025, 8 (02): : 292 - 309
  • [49] Multimodal sentiment analysis based on multi-layer feature fusion and multi-task learning
    Cai, Yujian
    Li, Xingguang
    Zhang, Yingyu
    Li, Jinsong
    Zhu, Fazheng
    Rao, Lin
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [50] Multi-Layer Model Based on Multi-Scale and Multi-Feature Fusion for SAR Images
    Zhai, Aobo
    Wen, Xianbin
    Xu, Haixia
    Yuan, Liming
    Meng, Qingxia
    REMOTE SENSING, 2017, 9 (10)