Machine-learning-based prediction and optimization of emerging contaminants' adsorption capacity on biochar materials

被引:50
|
作者
Jaffari, Zeeshan Haider [1 ]
Jeong, Heewon [1 ]
Shin, Jaegwan [2 ]
Kwak, Jinwoo [2 ]
Son, Changgil [2 ]
Lee, Yong-Gu [3 ]
Kim, Sangwon [2 ]
Chon, Kangmin [2 ,3 ]
Cho, Kyung Hwa [1 ,4 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Urban & Environm Engn, UNIST Gil 50, Ulsan 44919, South Korea
[2] Kangwon Natl Univ, Dept Integrated Energy & Infra Syst, Kangwondaehak Gil 1, Chuncheon Si 24341, Gangwon Do, South Korea
[3] Kangwon Natl Univ, Coll Engn, Dept Environm Engn, Kangwondaehak Gil 1, Chuncheon Si 24341, Gangwon Do, South Korea
[4] Ulsan Natl Inst Sci & Technol UNIST, Grad Sch Carbon Neutral, UNIST Gil 50, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
Machine learning; CatBoost; Adsorption; Emerging contaminants; Biochar; WASTE-WATER; SORPTION MECHANISMS; CARBON; IMPACT;
D O I
10.1016/j.cej.2023.143073
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biochar materials have recently received considerable recognition as eco-friendly and cost-effective adsorbents capable of effectively removing hazardous emerging contaminants (e.g., pharmaceuticals, herbicides, and fun-gicides) to aquatic organisms and human health accumulated in aquatic ecosystems. In this study, ten tree-based machine learning (ML) models, including bagging, CatBoost, ExtraTrees, HistGradientBoosting, XGBoost, Gra-dientBoosting, DecisionTree, Random Forest, Light gradient Boosting, and KNearest Neighbors, have been built to accurately predict the adsorption capacity of biochar materials toward ECs in aqueous solutions. A very large data set with 3,757 data points was generated using 24 input variables (i.e., pyrolysis conditions for biochar production (3 features), biochar characteristics (3 features), biochar compositions (6 features), and adsorption experimental conditions (12 features)) obtained from the batch adsorption experiments to remove 12 kinds of ECs using 18 different biochar materials. The rigorous evaluation and comparison of the ML model performances shows that CatBoost model had the highest test coefficient of determination (0.9433) and lowest mean absolute error (4.95 mg/g), outperformed clearly all other models. The feature importance analyzed by the shapley ad-ditive explanations (SHAP) indicated that the adsorption experimental conditions provided the highest impact on the model prediction for adsorption capacity (41 %) followed by the adsorbent composition (35 %), adsorbent characterization (20 %), and synthesis conditions (3)%). The optimized experimental conditions predicted by the modeling were a N/C ratio of 0.017, BET surface area of 1040 m(2)/g, content of C(%) contents of 82.1 %, pore volume of 0.46 cm(3)/g, initial ECs concentration of 100 mg/L, type of pollutant (CAR), adsorption type (Single) and adsorption contact time (720 min).
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A Machine-Learning-Based Method for Ship Propulsion Power Prediction in Ice
    Zhou, Li
    Sun, Qianyang
    Ding, Shifeng
    Han, Sen
    Wang, Aimin
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (07)
  • [42] Machine-Learning-Based Prediction of Land Prices in Seoul, South Korea
    Kim, Jungsun
    Won, Jaewoong
    Kim, Hyeongsoon
    Heo, Joonghyeok
    SUSTAINABILITY, 2021, 13 (23)
  • [43] Machine-learning-based prediction of regularization parameters for seismic inverse problems
    Shihuan Liu
    Jiashu Zhang
    Acta Geophysica, 2021, 69 : 809 - 820
  • [44] Machine-Learning-Based Thermal Conductivity Prediction for Additively Manufactured Alloys
    Bhandari, Uttam
    Chen, Yehong
    Ding, Huan
    Zeng, Congyuan
    Emanet, Selami
    Gradl, Paul R.
    Guo, Shengmin
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2023, 7 (05):
  • [45] Machine-learning-based optimization framework to support recovery-based design
    Issa, Omar
    Silva-Lopez, Rodrigo
    Baker, Jackw.
    Burton, Henry V.
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2023, 52 (11): : 3256 - 3280
  • [46] Adsorption of emerging contaminants from water and wastewater by modified biochar: A review
    Cheng, Ning
    Wang, Bing
    Wu, Pan
    Lee, Xinqing
    Xing, Ying
    Chen, Miao
    Gao, Bin
    ENVIRONMENTAL POLLUTION, 2021, 273 (273)
  • [47] Taming Connectedness in Machine-Learning-Based Topology Optimization with Connectivity Graphs
    Behzadi, Mohammad Mahdi
    Chen, Jiangce
    Ilies, Horea T.
    COMPUTER-AIDED DESIGN, 2024, 168
  • [48] Machine Learning-Based Prediction of the Adsorption Characteristics of Biochar from Waste Wood by Chemical Activation
    Chang, Jinman
    Lee, Jai-Young
    Materials, 2024, 17 (21)
  • [49] Synthesis optimization and adsorption modeling of biochar for pollutant removal via machine learning
    Wentao Zhang
    Ronghua Chen
    Jie Li
    Tianyin Huang
    Bingdang Wu
    Jun Ma
    Qingqi Wen
    Jie Tan
    Wenguang Huang
    Biochar, 5
  • [50] Synthesis optimization and adsorption modeling of biochar for pollutant removal via machine learning
    Zhang, Wentao
    Chen, Ronghua
    Li, Jie
    Huang, Tianyin
    Wu, Bingdang
    Ma, Jun
    Wen, Qingqi
    Tan, Jie
    Huang, Wenguang
    BIOCHAR, 2023, 5 (01)