Linear Regulating of Polymer Acceptor Aggregation with Short Alkyl Chain Units Enhances All-Polymer Solar Cells' Efficiency

被引:4
|
作者
Qiu, Jinjing [1 ]
Liu, Miao [1 ]
Wang, Yang [1 ]
Xia, Xinxin [2 ]
Liu, Qi [1 ]
Guo, Xia [1 ]
Lu, Xinhui [2 ]
Zhang, Maojie [1 ]
机构
[1] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Lab Adv Optoelect Mat, Suzhou Key Lab Novel Semicond Optoelect Mat & Devi, Suzhou 215123, Peoples R China
[2] Chinese Univ Hong Kong, Dept Phys, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
all-polymer solar cells; molecular aggregations; polymer acceptors; random copolymerization;
D O I
10.1002/marc.202200753
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The power conversion efficiency (PCE) of all-polymer solar cells (all-PSCs) has ascended rapidly arising from the development of polymerized small-molecule acceptor materials. However, numerous insulating long alkyl chains, which ensure the solubility of the polymer, result in inferior aggregation and charge mobility. Herein, this work proposes a facile random copolymerization strategy of two small molecule acceptor units with different lengths of alkyl side chains and synthesizes a series of polymer acceptors PYT-EHx, where x is the percentage of the short alkyl chain units. The aggregation strength and charge mobility of the acceptors rise linearly with increasing the proportion of short alkyl chain units. Thus, the PYT-EH20 reaches balanced aggregation with the star polymer donor PBDB-T, resulting in optimal morphology, fastest carrier transport, and reduced recombination and energy loss. Consequently, the PYT-EH20-based device yields a 14.8% PCE, a 16% improvement over the control PYT-EH0-based device, accompanied by an increase in open-circuit voltage (V-oc), short-circuit current density (J(sc)), and fill factor (FF). This work demonstrates that the random copolymerization strategy with short alkyl chain insertion is an effective avenue for developing high-performance polymer acceptors, which facilitates further advances in the efficiency of all-PSCs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Polymer donor-polymer acceptor (all-polymer) solar cells
    Facchetti, Antonio
    MATERIALS TODAY, 2013, 16 (04) : 123 - 132
  • [2] A Universal Fluorinated Polymer Acceptor Enables All-Polymer Solar Cells with >15% Efficiency
    Peng, Feng
    An, Kang
    Zhong, Wenkai
    Li, Zhenye
    Ying, Lei
    Li, Ning
    Huang, Zhenqiang
    Zhu, Chunguang
    Fan, Baobing
    Huang, Fei
    Cao, Yong
    ACS ENERGY LETTERS, 2020, 5 (12): : 3702 - 3707
  • [3] A polymer acceptor containing the B←N unitfor all-polymer solar cells with 14% efficiency
    Wang, Yinghui
    Wang, Ning
    Yang, Qingqing
    Zhang, Jidong
    Liu, Jun
    Wang, Lixiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (37) : 21071 - 21077
  • [4] Side chain engineering of polymer acceptors for all-polymer solar cells with enhanced efficiency
    Sun, Huiliang
    Liu, Bin
    Wang, Zaiyu
    Ling, Shaohua
    Zhang, Yujie
    Zhang, Guangye
    Wang, Yang
    Zhang, Ming
    Li, Bolin
    Yang, Wanli
    Wang, Junwei
    Guo, Han
    Liu, Feng
    Guo, Xugang
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (12) : 4012 - 4020
  • [5] Polymer Acceptor Based on BN Units with Enhanced Electron Mobility for Efficient All-Polymer Solar Cells
    Zhao, Ruyan
    Dou, Chuandong
    Xie, Zhiyuan
    Liu, Jun
    Wang, Lixiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (17) : 5313 - 5317
  • [6] Simple perylene diimide based polymer acceptor with tuned aggregation for efficient all-polymer solar cells
    Liu, Zhilin
    Du, Zurong
    Wang, Xunchang
    Zhu, Dangqiang
    Yang, Chunming
    Yang, Wu
    Qu, Xiaofei
    Bao, Xichang
    Yang, Renqiang
    DYES AND PIGMENTS, 2019, 170
  • [7] Side chain engineering of n-type conjugated polymer enhances photocurrent and efficiency of all-polymer solar cells
    Hwang, Ye-Jin
    Earmme, Taeshik
    Subramaniyan, Selvam
    Jenekhe, Samson A.
    CHEMICAL COMMUNICATIONS, 2014, 50 (74) : 10801 - 10804
  • [8] 15.4% Efficiency all-polymer solar cells
    Long Zhang
    Tao Jia
    Langheng Pan
    Baoqi Wu
    Zaiyu Wang
    Ke Gao
    Feng Liu
    Chunhui Duan
    Fei Huang
    Yong Cao
    Science China(Chemistry), 2021, (03) : 408 - 412
  • [9] 15.4% Efficiency all-polymer solar cells
    Zhang, Long
    Jia, Tao
    Pan, Langheng
    Wu, Baoqi
    Wang, Zaiyu
    Gao, Ke
    Liu, Feng
    Duan, Chunhui
    Huang, Fei
    Cao, Yong
    SCIENCE CHINA-CHEMISTRY, 2021, 64 (03) : 408 - 412
  • [10] 15.4% Efficiency all-polymer solar cells
    Long Zhang
    Tao Jia
    Langheng Pan
    Baoqi Wu
    Zaiyu Wang
    Ke Gao
    Feng Liu
    Chunhui Duan
    Fei Huang
    Yong Cao
    Science China Chemistry, 2021, 64 : 408 - 412