Investigation of oil/water two-phase flow behavior in laminated shale porous media considering heterogeneous structure and fluid-solid interaction

被引:6
|
作者
Li, Lei [1 ,2 ]
Zhang, Dian [2 ]
Su, Yuliang [1 ,2 ]
Hao, Yongmao [1 ,2 ]
Zhang, Xue [1 ,2 ]
Huang, Zhaoxue [1 ,2 ]
Zhang, Wenjing [3 ]
机构
[1] China Univ Petr East China, Natl Key Lab Deep Oil & Gas, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Sch Petr Engn, Qingdao 266580, Peoples R China
[3] Tarim Oilfield Co, Res Inst Explorat & Dev, PetroChina, Korla 841000, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
LATTICE BOLTZMANN METHOD; GAS-TRANSPORT; ORGANIC NANOPORES; LIQUID FLOW; OIL; SIMULATION; PERMEABILITY; DIFFUSION; UNCERTAINTY; CAPILLARY;
D O I
10.1063/5.0192714
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The laminated structure of continental shale oil reservoirs introduces significant macro and micro heterogeneity, posing challenges for efficient shale oil extraction. Existing microscopic experimental and simulation methods are insufficient to accurately simulate the fluid flow behavior in mud-lime interactive laminated shale reservoirs. This study delves into the complexities of laminated shale reservoirs with a focus on their heterogeneous structure and wettability. Using scanning electron microscopy, we extracted the structural features of laminated shale reservoirs and established a Multicomponent and multiphase -multi relaxation time-Lattice Boltzmann model(MCMP-MRT-LBM) that considers nanoscale effects such as wall adsorption, liquid-solid slippage, and liquid-liquid slippage. We investigated the occurrence state, the flow behavior, and the phase seepage characteristics of crude oil in laminated shale at different water saturation stages and explored the reasons behind interlayer channeling and the conditions under which crude oil is mobile within limestone and mudstone layers. Then, we examined the impact of varying factors, including heterogeneous wettability, displacement pressure gradients, and pore size, on relative permeability, water injection capacity, sweep efficiency, and crude oil recovery in laminated reservoirs. The results indicate that wettability and pore size distribution, driven by capillary and viscous forces, dictate the occurrence state of remaining oil. Wettability primarily influences fluid distribution, whereas pore size distribution substantially impacts fluid morphology. It also highlights the pivotal role of flow velocity differences between layers in causing interlayer channeling. Increasing the capillary number promotes crude oil mobility within mudstone layers, with the initiation pressure gradient in mudstone layers being 2.5 times that of the limestone layer. The examination of the oil-water relative permeability reveals the dominance of pressure gradients in affecting oil flow capabilities, while pore size significantly influences water flow capacity. By optimizing various factors, it is possible to enhance water injection capacity and sweep efficiency, resulting in a substantial 5%-10% increase in crude oil recovery from laminated shale reservoirs.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Two-Phase Incompressible Flow with Dynamic Capillary Pressure in a Heterogeneous Porous Media
    Mostefai, Mohamed Lamine
    Choucha, Abdelbaki
    Boulaaras, Salah
    Alrawashdeh, Mufda
    MATHEMATICS, 2024, 12 (19)
  • [42] A hybridizable discontinuous Galerkin method for two-phase flow in heterogeneous porous media
    Fabien, Maurice S.
    Knepley, Matthew G.
    Riyiere, Beatrice M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 116 (03) : 161 - 177
  • [43] Adaptive heterogeneous multiscale methods for immiscible two-phase flow in porous media
    Henning, Patrick
    Ohlberger, Mario
    Schweizer, Ben
    COMPUTATIONAL GEOSCIENCES, 2015, 19 (01) : 99 - 114
  • [44] A Robust VAG Scheme for a Two-Phase Flow Problem in Heterogeneous Porous Media
    Brenner, Konstantin
    Masson, R.
    Quenjel, E. H.
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 565 - 573
  • [45] Two-phase flow in heterogeneous porous media: A multiscale digital model approach
    Wu, Yuqi
    Tahmasebi, Pejman
    Liu, Keyu
    Fagbemi, Samuel
    Lin, Chengyan
    An, Senyou
    Ren, Lihua
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 194
  • [46] Adaptive heterogeneous multiscale methods for immiscible two-phase flow in porous media
    Patrick Henning
    Mario Ohlberger
    Ben Schweizer
    Computational Geosciences, 2015, 19 : 99 - 114
  • [47] Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation
    Eymard, Robert
    Guichard, Cindy
    Herbin, Raphaele
    Masson, Roland
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2014, 94 (7-8): : 560 - 585
  • [48] Two-phase flow in heterogeneous porous media based on Brinkman and Darcy models
    Konopka, Thiago F.
    Carvalho, Marcio S.
    COMPUTATIONAL GEOSCIENCES, 2025, 29 (01)
  • [49] Numerical investigation of two-phase fluid flow and heat transfer in porous media heated from the side
    Waite, MW
    Amin, MR
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1999, 35 (03) : 271 - 290
  • [50] The impact of porous structure on oil-water two-phase flow under CO2 environment in continental shale reservoirs
    Meng, Yufan
    Song, Zhaojie
    Song, Yilei
    Zhang, Yunfei
    PHYSICS OF FLUIDS, 2024, 36 (06)