A XCO2 Retrieval Algorithm Coupled Spatial Correlation for the Aerosol and Carbon Detection Lidar

被引:9
|
作者
Pei, Zhipeng [1 ,3 ]
Han, Ge [2 ,5 ]
Shi, Tianqi [1 ]
Ma, Xin [1 ]
Gong, Wei [1 ,4 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Peoples R China
[3] Hubei Luojia Lab, Wuhan, Peoples R China
[4] Wuhan Inst Quantum Technol, Wuhan, Peoples R China
[5] Engn Res Ctr Minist Educ, Percept & Effectiveness Assessment Carbon Neutral, Wuhan, Peoples R China
关键词
Carbon neutrality; IPDA; Atmospheric trace gases; Retrieval algorithms; Regularization; URBAN CO2 EMISSIONS; AIRBORNE VALIDATION; METHANE; CH4; SPECTROMETER; INFORMATION; CALIBRATION; SIMULATION; INVERSION; MODEL;
D O I
10.1016/j.atmosenv.2023.119933
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We describe the approach to estimating the atmospheric carbon dioxide (CO2) for the Aerosol and Carbon Detection Lidar (ACDL) onboard the Atmospheric Environment Monitoring Satellite (AEMS). The method estimates the optimal state vector by maximizing the measurement posterior probability under a given prior state vector probability distribution. A priori constraint considering the spatial correlation is used as regularization to solve the ill-posed problem. We ran a series of observing system simulation experiments to demonstrate the critical outcome and character percentage uncertainty reduction. The results show that the state vector uncertainty can be reduced by & SIM; 10% near the surface for the single sounding. The CO2 column-averaged dry air mole fraction (XCO2 ) derived by this algorithm is more stable than that obtained by the conventional algorithm and enables the monitoring of concentration changes for the multiple soundings.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A high-accuracy method for simulating the XCO2 global distribution using GOSAT retrieval data
    MingWei Zhao
    XingYing Zhang
    TianXiang Yue
    Chun Wang
    Ling Jiang
    JingLu Sun
    Science China Earth Sciences, 2017, 60 : 143 - 155
  • [42] Aerosol Mass Concentration Retrieval Algorithm Based on LiDAR and Microwave Radiometry
    Ji C.
    Chen Z.
    Huang Y.
    Mao J.
    Wang Z.
    Gu R.
    Liu A.
    Zhang C.
    Xiang Y.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51 (05):
  • [43] Retrieval of XCO2 from simulated Orbiting Carbon Observatory measurements using the fast linearized R-2OS radiative transfer model
    Natraj, Vijay
    Boesch, Hartmut
    Spurr, Robert J. D.
    Yung, Yuk L.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D11)
  • [44] An 11-year record of XCO2 estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm
    Taylor, Thomas E.
    O'Dell, Christopher W.
    Crisp, David
    Kuze, Akhiko
    Lindqvist, Hannakaisa
    Wennberg, Paul O.
    Chatterjee, Abhishek
    Gunson, Michael
    Eldering, Annmarie
    Fisher, Brendan
    Kiel, Matthaus
    Nelson, Robert R.
    Merrelli, Aronne
    Osterman, Greg
    Chevallier, Frederic
    Palmer, Paul, I
    Feng, Liang
    Deutscher, Nicholas M.
    Dubey, Manvendra K.
    Feist, Dietrich G.
    Garcia, Omaira E.
    Griffith, David W. T.
    Hase, Frank
    Iraci, Laura T.
    Kivi, Rigel
    Liu, Cheng
    De Maziere, Martine
    Morino, Isamu
    Notholt, Justus
    Oh, Young-Suk
    Ohyama, Hirofumi
    Pollard, David F.
    Rettinger, Markus
    Schneider, Matthias
    Roehl, Coleen M.
    Sha, Mahesh Kumar
    Shiomi, Kei
    Strong, Kimberly
    Sussmann, Ralf
    Te, Yao
    Velazco, Voltaire A.
    Vrekoussis, Mihalis
    Warneke, Thorsten
    Wunch, Debra
    EARTH SYSTEM SCIENCE DATA, 2022, 14 (01) : 325 - 360
  • [45] XCO2 Fusion Algorithm Based on Multi-Source Greenhouse Gas Satellites and CarbonTracker
    Liang, Ailin
    Pang, Ruonan
    Chen, Cheng
    Xiang, Chengzhi
    ATMOSPHERE, 2023, 14 (09)
  • [46] An Interpolation and Prediction Algorithm for XCO2 Based on Multi-Source Time Series Data
    Hu, Kai
    Zhang, Qi
    Feng, Xinyan
    Liu, Ziran
    Shao, Pengfei
    Xia, Min
    Ye, Xiaoling
    REMOTE SENSING, 2024, 16 (11)
  • [47] The importance of digital elevation model accuracy in XCO2 retrievals: improving the Orbiting Carbon Observatory 2 Atmospheric Carbon Observations from Space version 11 retrieval product
    Jacobs, Nicole
    O'Dell, Christopher W.
    Taylor, Thomas E.
    Logan, Thomas L.
    Byrne, Brendan
    Kiel, Matthaus
    Kivi, Rigel
    Heikkinen, Pauli
    Merrelli, Aronne
    Payne, Vivienne H.
    Chatterjee, Abhishek
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2024, 17 (05) : 1375 - 1401
  • [48] Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2 XCO2 retrievals
    Wang, Hengmao
    Jiang, Fei
    Wang, Jun
    Ju, Weimin
    Chen, Jing M.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (18) : 12067 - 12082
  • [49] Evaluating the consistency between OCO-2 and OCO-3 XCO2 estimates derived from the NASA ACOS version 10 retrieval algorithm
    Taylor, Thomas E.
    O'Dell, Christopher W.
    Baker, David
    Bruegge, Carol
    Chang, Albert
    Chapsky, Lars
    Chatterjee, Abhishek
    Cheng, Cecilia
    Chevallier, Frederic
    Crisp, David
    Dang, Lan
    Drouin, Brian
    Eldering, Annmarie
    Feng, Liang
    Fisher, Brendan
    Fu, Dejian
    Gunson, Michael
    Haemmerle, Vance
    Keller, Graziela R.
    Kiel, Matthaus
    Kuai, Le
    Kurosu, Thomas
    Lambert, Alyn
    Laughner, Joshua
    Lee, Richard
    Liu, Junjie
    Mandrake, Lucas
    Marchetti, Yuliya
    McGarragh, Gregory
    Merrelli, Aronne
    Nelson, Robert R.
    Osterman, Greg
    Oyafuso, Fabiano
    Palmer, Paul I.
    Payne, Vivienne H.
    Rosenberg, Robert
    Somkuti, Peter
    Spiers, Gary
    To, Cathy
    Weir, Brad
    Wennberg, Paul O.
    Yu, Shanshan
    Zong, Jia
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2023, 16 (12) : 3173 - 3209
  • [50] Analysis of Four Years of Global XCO2 Anomalies as Seen by Orbiting Carbon Observatory-2
    Hakkarainen, Janne
    Ialongo, Iolanda
    Maksyutov, Shamil
    Crisp, David
    REMOTE SENSING, 2019, 11 (07)