Octonions and hyperbolic octonions with the k-balancing and k-Lucas balancing numbers

被引:1
|
作者
Prasad, Kalika [1 ,2 ]
Kumari, Munesh [1 ,2 ]
Tanti, Jagmohan [3 ]
机构
[1] Cent Univ Jharkhand, Dept Math, Ranchi 835205, India
[2] Govt Engn Coll Bhojpur, Dept Math, Bihar 802301, India
[3] Babasaheb Bhimrao Ambedkar Univ, Dept Math, Lucknow 226025, India
来源
JOURNAL OF ANALYSIS | 2024年 / 32卷 / 03期
关键词
k-balancing octonions; k-balancing hyperbolic octonions; Binet's formula; Catalan's identity; Generating functions; FIBONACCI; JACOBSTHAL; IDENTITIES;
D O I
10.1007/s41478-023-00716-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the k-balancing and k-Lucas balancing octonions and hyperbolic octonions. We give Binet type formulas of them and obtain some well-known identities like Cassini's identity, d'Ocagne's identity, Catalan identity, Vajda's identity, generating functions, etc. for these octonions in closed form. Also we present some interesting properties of them. As a special case fork 1/41, the results immediately follow for balancing and Lucas-balancing octonions and hyperbolic octonions.
引用
收藏
页码:1281 / 1296
页数:16
相关论文
共 50 条
  • [11] PROPERTIES OF k-FIBONACCI AND k -LUCAS OCTONIONS
    Godase, A. D.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (04): : 979 - 998
  • [12] ON k-JACOBSTHAL AND k-JACOBSTHAL-LUCAS OCTONIONS
    Kilic, Nayil
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2019, 41 (01): : 1 - 17
  • [13] The k-Lucas Hyperbolic Functions
    Tasci, Dursun
    Azman, Huriye
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2014, 5 (01): : 11 - 21
  • [14] ON THE SUMS OF k-LUCAS NUMBERS
    Panwar, Yashwant K.
    Mansuri, Akhlak
    Bhandari, Jaya
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (12): : 3427 - 3434
  • [15] Optimization by k-Lucas numbers
    Demir, Ali
    Omur, Nese
    Ulutas, Yucel Turker
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (01) : 366 - 371
  • [16] k-BALANCING NUMBERS AND NEW GENERATING FUNCTIONS WITH SOME SPECIAL NUMBERS AND POLYNOMIALS
    Yakoubi, Fatma
    Boussayoud, Ali
    Aloui, Baghdadi
    Merzouk, Hind
    JOURNAL OF SCIENCE AND ARTS, 2022, (04): : 929 - 940
  • [17] FERMAT k-FIBONACCI AND k-LUCAS NUMBERS
    Bravo, Jhon J.
    Herrera, Jose L.
    MATHEMATICA BOHEMICA, 2020, 145 (01): : 19 - 32
  • [18] Some properties of Fibonacci numbers, Fibonacci octonions, and generalized Fibonacci-Lucas octonions
    Diana Savin
    Advances in Difference Equations, 2015
  • [19] Trisection method by k-Lucas numbers
    Demir, Ali
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (01) : 339 - 345
  • [20] Some properties of Fibonacci numbers, Fibonacci octonions, and generalized Fibonacci-Lucas octonions
    Savin, Diana
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,