HDIQA: A Hyper Debiasing Framework for Full Reference Image Quality Assessment

被引:6
|
作者
Zhou, Mingliang [1 ]
Wang, Heqiang [1 ]
Wei, Xuekai [1 ]
Feng, Yong [1 ]
Luo, Jun [2 ]
Pu, Huayan [2 ]
Zhao, Jinglei [2 ]
Wang, Liming [2 ]
Chu, Zhigang [2 ]
Wang, Xin [2 ,3 ]
Fang, Bin [1 ]
Shang, Zhaowei [1 ]
机构
[1] Chongqing Univ, Sch Comp Sci, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Sch Mech & Vehicle Engn, Chongqing 400044, Peoples R China
[3] Chongqing Changan Automobile Co Ltd, Prod Dept, Chongqing 400020, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Image quality; Visualization; Tensors; Task analysis; Perturbation methods; Quality assessment; Image quality assessment; deep feature; hypernetwork; Tucker decomposition; SIMILARITY; VISIBILITY;
D O I
10.1109/TBC.2024.3353573
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent methods that project images into deep feature spaces to evaluate quality degradation have produced inefficient results due to biased mappings; i.e., these projections are not aligned with the perceptions of humans. In this paper, we develop a hyperdebiasing framework to address such bias in full-reference image quality assessment. First, we perform orthogonal Tucker decomposition on the top of feature tensors extracted by a feature extraction network to project features into a robust content-agnostic space and effectively eliminate the bias caused by subtle image perturbations. Second, we propose a hypernetwork in which the content-aware parameters are produced for reprojecting features in a deep subspace for quality prediction. By leveraging the content diversity of large-scale blind-reference datasets, the perception rule between image content and image quality is established. Third, a quality prediction network is proposed by combining debiased content-aware and content-agnostic features to predict the final image quality score. To demonstrate the efficacy of our proposed method, we conducted numerous experiments on comprehensive databases. The experimental results validate that our method achieves state-of-the-art performance in predicting image quality.
引用
收藏
页码:545 / 554
页数:10
相关论文
共 50 条
  • [41] A full reference image quality assessment method for retina_like sensor
    Luo, Zhihu
    Cao, Fengmei
    2013 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: OPTOELECTRONIC IMAGING AND PROCESSING TECHNOLOGY, 2013, 9045
  • [42] Neural Network-Based Full-Reference Image Quality Assessment
    Bosse, Sebastian
    Maniry, Dominique
    Mueller, Klaus-Robert
    Wiegand, Thomas
    Samek, Wojciech
    2016 PICTURE CODING SYMPOSIUM (PCS), 2016,
  • [43] Full-Reference Predictive Modeling of Subjective Image Quality Assessment with ANFIS
    El-Alfy, El-Sayed M.
    Riaz, Mohammed Rehan
    AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2014, 2015, 8946 : 296 - 311
  • [44] No Reference Image Quality Assessment
    Mandgaonkar, Vrushali S.
    Kulkarni, Charudatta V.
    2014 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2014,
  • [45] Dynamic Receptive Field Generation for Full-Reference Image Quality Assessment
    Kim, Woojae
    Nguyen, Anh-Duc
    Lee, Sanghoon
    Bovik, Alan Conrad
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 4219 - 4231
  • [46] Machine learning to design full-reference image quality assessment algorithm
    Charrier, Christophe
    Lezoray, Olivier
    Lebrun, Gilles
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2012, 27 (03) : 209 - 219
  • [47] Full-reference image quality assessment using statistical local correlation
    Ding, Yong
    Wang, Shaoze
    Zhang, Dong
    ELECTRONICS LETTERS, 2014, 50 (02) : 79 - 80
  • [48] A weighted full-reference image quality assessment based on visual saliency
    Wen, Yang
    Li, Ying
    Zhang, Xiaohua
    Shi, Wuzhen
    Wang, Lin
    Chen, Jiawei
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 43 : 119 - 126
  • [49] Machine learning to design full-reference image quality assessment algorithm
    Ling, Wang Yu
    Hu, Yang
    Telkomnika - Indonesian Journal of Electrical Engineering, 2013, 11 (06): : 3439 - 3444
  • [50] RVSIM: a feature similarity method for full-reference image quality assessment
    Yang, Guangyi
    Li, Deshi
    Lu, Fan
    Liao, Yue
    Yang, Wen
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2018,