Data-Driven Cyberphysical Anomaly Detection for Microgrids With GFM Inverters

被引:1
|
作者
Liu, Xiaorui [1 ]
Li, Hui [1 ]
机构
[1] Florida State Univ, Ctr Adv Power Syst, Tallahassee, FL 32310 USA
关键词
Inverters; Cyber-physical systems; Voltage control; Microgrids; Anomaly detection; Synchronization; Reactive power; Anomaly detection and classification; cyberphysical security; INDEX TERMS; data-driven; FDIAs; GFM inverters; HIFs; real-time simulation; ISLANDED MICROGRIDS; AC; MITIGATION; STRATEGY; ATTACKS;
D O I
10.1109/OJPEL.2023.3290900
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Microgrids (MGs) have gained significant attention considering their enhanced capability to integrate increasing distributed energy resources (DERs). The application of grid forming (GFM) inverters in a MG can control voltage/frequency, enable both islanded and grid-connected operation, and achieve 100% penetration. However, cyberphysical anomaly detection for a MG with GFM inverters has not been investigated before. In this article, the cyberphysical security of an ac MG with multiple GFM inverters is comprehensively assessed by considering short-circuit high-impedance faults (HIFs) as well as firstly exploiting False Data Injection Attacks (FDIAs) against centralized communication networks. Although the applied IEEE 1547-2018 based protection function could detect abnormal conditions, there exist cyberphysical anomalies could bypass it. In order to accomplish the detection and classification of such anomaly cases, a novel LSTM-based approach is proposed to identify the multi-class pattern regarding normal, cyberphysical threats during islanded and grid-connected by utilizing time series point of common coupling (PCC) frequency data as the paramount feature to effectively reflect the system operation status. The simulation is conducted in OPAL-RT real-time environment and the effectiveness of the proposed strategy is verified with an average detection accuracy of 94.72%.
引用
收藏
页码:498 / 511
页数:14
相关论文
共 50 条
  • [1] Data-Driven Anomaly Detection in Autonomous Platoon
    Ucar, Seyhan
    Ergen, Sinem Coleri
    Ozkasap, Oznur
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [2] Data-Driven Network Intelligence for Anomaly Detection
    Xu, Shengjie
    Qian, Yi
    Hu, Rose Qingyang
    [J]. IEEE NETWORK, 2019, 33 (03): : 88 - 95
  • [3] Study on Optimization of Data-Driven Anomaly Detection
    Zhou, Yiqing
    Liao, Rui
    Chen, Yongjia
    [J]. 2022 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ITS APPLICATIONS (ICODSA), 2022, : 123 - 127
  • [4] A Data-Driven Detection strategy of False Data in Cooperative DC Microgrids
    Yang, Yixian
    Guo, Li
    Li, Xialin
    Li, Jiaxin
    Liu, Wei
    He, Huihui
    [J]. IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [5] Online data-driven anomaly detection in autonomous robots
    Khalastchi, Eliahu
    Kalech, Meir
    Kaminka, Gal A.
    Lin, Raz
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 43 (03) : 657 - 688
  • [6] Big data-driven anomaly detection in cellular networks
    Hussain, Bilal
    Du, Qinghe
    Ren, Pinyi
    [J]. 2017 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2017, : 678 - 683
  • [7] Data-Driven Network Analysis for Anomaly Traffic Detection
    Alam, Shumon
    Alam, Yasin
    Cui, Suxia
    Akujuobi, Cajetan
    [J]. SENSORS, 2023, 23 (19)
  • [8] Online data-driven anomaly detection in autonomous robots
    Eliahu Khalastchi
    Meir Kalech
    Gal A. Kaminka
    Raz Lin
    [J]. Knowledge and Information Systems, 2015, 43 : 657 - 688
  • [9] A hybrid data-driven framework for satellite telemetry data anomaly detection
    Xu, Zhaoping
    Cheng, Zhijun
    Guo, Bo
    [J]. ACTA ASTRONAUTICA, 2023, 205 : 281 - 294
  • [10] Anomaly Detection in Flight Recorder Data: A Dynamic Data-driven Approach
    Das, Santanu
    Sarkar, Soumalya
    Ray, Asok
    Srivastava, Ashok
    Simon, Donald L.
    [J]. 2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 2668 - 2673