Relative Rota-Baxter Leibniz algebras, their characterization and cohomology

被引:0
|
作者
Das, Apurba [1 ]
机构
[1] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 17期
关键词
Leibniz algebras; (relative) Rota-Baxter Leibniz algebras; L-infinity-algebras; cohomology; deformations; LIE-ALGEBRAS; DEFORMATIONS;
D O I
10.1080/03081087.2022.2121367
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, relative Rota-Baxter (Lie/associative) algebras are extensively studied in the literature from cohomological points of view. In this paper, we consider relative Rota-Baxter Leibniz algebras (rRB Leibniz algebras) as the object of our study. We construct an L-infinity-algebra that characterizes rRB Leibniz algebras as its Maurer-Cartan elements. Then we define representations of an rRB Leibniz algebra and introduce cohomology with coefficients in a representation. As applications of cohomology, we study deformations and abelian extensions of rRB Leibniz algebras.
引用
收藏
页码:2796 / 2822
页数:27
相关论文
共 50 条