Deep Learning-Based Segmentation of Trypanosoma cruzi Nests in Histopathological Images

被引:2
|
作者
Hevia-Montiel, Nidiyare [1 ]
Haro, Paulina [2 ]
Guillermo-Cordero, Leonardo [3 ]
Perez-Gonzalez, Jorge [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Unidad Acad Inst Invest Matemat Aplicadas & Siste, Km 4-5 Carretera Merida Tetiz, Ucu 97357, Yucatan, Mexico
[2] Univ Autonoma Baja Calif, Inst Invest Ciencias Vet, Mexicali 21386, Baja California, Mexico
[3] Univ Autonoma Yucatan, Fac Med Vet & Zootecnia, Km 15-5 Carretera Merida Xmatkuil, Tizapan 97100, Yucatan, Mexico
关键词
automatic nest segmentation; chagas disease; convolutional neural network; deep learning; histopathological imaging; Trypanosoma cruzi infection; CHAGAS-DISEASE;
D O I
10.3390/electronics12194144
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use of artificial intelligence has shown good performance in the medical imaging area, in particular the deep learning methods based on convolutional neural networks for classification, detection, and/or segmentation tasks. The task addressed in this research work is the segmentation of amastigote nests from histological microphotographs in the study of Trypanosoma cruzi infection (Chagas disease) implementing a U-Net convolutional network architecture. For the nests' segmentation, a U-Net architecture was trained on histological images of an acute-stage murine experimental model performing a 5-fold cross-validation, while the final tests were carried out with data unseen by the U-Net from three image groups of different experimental models. During the training stage, the obtained results showed an average accuracy of 98.19 +/- 0.01, while in the case of the final tests, an average accuracy of 99.9 +/- 0.1 was obtained for the control group, as well as 98.8 +/- 0.9 and 99.1 +/- 0.8 for two infected groups; in all cases, high sensitivity and specificity were observed in the results. We can conclude that the use of a U-Net architecture proves to be a relevant tool in supporting the diagnosis and analysis of histological images for the study of Chagas disease.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Deep Learning-Based Real-Time Crack Segmentation for Pavement Images
    Wang, Wenjun
    Su, Chao
    KSCE JOURNAL OF CIVIL ENGINEERING, 2021, 25 (12) : 4495 - 4506
  • [32] Optimizing Glaucoma Diagnosis with Deep Learning-Based Segmentation and Classification of Retinal Images
    Alkhaldi, Nora A.
    Alabdulathim, Ruqayyah E.
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [33] Deep learning-based automatic segmentation of images in cardiac radiography: A promising challenge
    Song, Yucheng
    Ren, Shengbing
    Lu, Yu
    Fu, Xianghua
    Wong, Kelvin K. L.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 220
  • [34] Deep learning-based pelvic levator hiatus segmentation from ultrasound images
    Huang, Zeping
    Qu, Enze
    Meng, Yishuang
    Zhang, Man
    Wei, Qiuwen
    Bai, Xianghui
    Zhang, Xinling
    EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2022, 9
  • [35] Deep learning-based fully automatic segmentation of wrist cartilage in MR images
    Brui, Ekaterina
    Efimtcev, Aleksandr Y.
    Fokin, Vladimir A.
    Fernandez, Remi
    Levchuk, Anatoliy G.
    Ogier, Augustin C.
    Samsonov, Alexey A.
    Mattei, Jean P.
    Melchakova, Irina V.
    Bendahan, David
    Andreychenko, Anna
    NMR IN BIOMEDICINE, 2020, 33 (08)
  • [36] Automatic deep learning-based pleural effusion segmentation in lung ultrasound images
    Damjan Vukovic
    Andrew Wang
    Maria Antico
    Marian Steffens
    Igor Ruvinov
    Ruud JG van Sloun
    David Canty
    Alistair Royse
    Colin Royse
    Kavi Haji
    Jason Dowling
    Girija Chetty
    Davide Fontanarosa
    BMC Medical Informatics and Decision Making, 23
  • [37] Automatic deep learning-based pleural effusion segmentation in lung ultrasound images
    Vukovic, Damjan
    Wang, Andrew
    Antico, Maria
    Steffens, Marian
    Ruvinov, Igor
    van Sloun, Ruud J. G.
    Canty, David
    Royse, Alistair
    Royse, Colin
    Haji, Kavi
    Dowling, Jason
    Chetty, Girija
    Fontanarosa, Davide
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [38] Deep learning-based tumor segmentation of endoscopy images for rectal cancer patients
    Weishaupt, L.
    Antonacci, A. Thibodeau
    Garant, A.
    Singh, K.
    Miller, C.
    Vuong, T.
    Enger, S. A.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S773 - S775
  • [39] Deep Learning-Based Automatic Segmentation of the Proximal Femur from MR Images
    Zeng, Guodong
    Zheng, Guoyan
    INTELLIGENT ORTHOPAEDICS: ARTIFICIAL INTELLIGENCE AND SMART IMAGE-GUIDED TECHNOLOGY FOR ORTHOPAEDICS, 2018, 1093 : 73 - 79
  • [40] A deep learning-based method for the detection and segmentation of breast masses in ultrasound images
    Li, Wanqing
    Ye, Xianjun
    Chen, Xuemin
    Jiang, Xianxian
    Yang, Yidong
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (15):