Graded Components of Local Cohomology Modules II

被引:1
|
作者
Puthenpurakal, Tony J. [1 ]
Roy, Sudeshna [1 ]
机构
[1] Indian Inst Technol, Dept Math, Mumbai 400076, Maharashtra, India
关键词
Local comohology; Graded local cohomology; Weyl algebra; Generalized Eulerian modules; TAMENESS; PRIMES; PAIR;
D O I
10.1007/s10013-022-00555-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a commutative Noetherian ring containing a field of characteristic zero. Let R = A[X-1, ... , X-m] be a polynomial ring and A(m)(A) = A < X-1, ... , X-m, partial derivative(1), ... , partial derivative(m)> be the mth Weyl algebra over A, where partial derivative(i) = partial derivative/partial derivative X-i. Consider standard gradings on R and A(m)(A) by setting deg z = 0 for all z is an element of A, deg X-i = 1, and deg partial derivative(i) = -1 for i = 1, ... , m. We present a few results about the behavior of the graded components of local cohomology modules H-I(i)(R), where I is an arbitrary homogeneous ideal in R. We mostly restrict our attention to the vanishing, tameness, and rigidity properties. To obtain this, we use the theory of D-modules and show that generalized Eulerian A(m)(A)-modules exhibit these properties. As a corollary, we further get that components of graded local cohomology modules with respect to a pair of ideals display similar behavior.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [31] Some Results on Graded Generalized Local Cohomology Modules
    Dehghani-Zadeh, F.
    Zakeri, H.
    JOURNAL OF MATHEMATICAL EXTENSION, 2010, 5 (01) : 59 - 73
  • [32] Some properties of top graded local cohomology modules
    Katzman, M
    Sharp, RY
    JOURNAL OF ALGEBRA, 2003, 259 (02) : 599 - 612
  • [33] Tameness and Artinianness of Graded Generalized Local Cohomology Modules
    Jahangiri, M.
    Shirmohammadi, N.
    Tahamtan, Sh
    ALGEBRA COLLOQUIUM, 2015, 22 (01) : 131 - 146
  • [34] Hilbert-Samuel coefficients and postulation numbers of graded components of certain local cohomology modules
    Brodmann, M
    Rohrer, F
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (04) : 987 - 993
  • [35] ASYMPTOTIC BEHAVIOUR AND ARTINIAN PROPERTY OF GRADED LOCAL COHOMOLOGY MODULES
    Hassanzadeh, S. H.
    Jahangiri, M.
    Zakeri, H.
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (11) : 4095 - 4102
  • [36] Some Properties of Serre Subcategories in the Graded Local Cohomology Modules
    Hassani, Feysal
    Rasuli, Rasul
    JOURNAL OF MATHEMATICS, 2017, 2017
  • [37] Results of Graded Local Cohomology Modules with respect to a Pair of Ideals
    Dehghani-Zadeh, Fatemeh
    KYUNGPOOK MATHEMATICAL JOURNAL, 2018, 58 (01): : 9 - 17
  • [38] On Hilbert-Samuel Coefficients of Graded Local Cohomology Modules
    T. H. Freitas
    V. H. Jorge Pérez
    P. H. Lima
    Algebras and Representation Theory, 2023, 26 : 2383 - 2397
  • [39] Supporting degrees of multi-graded local cohomology modules
    Brodmann, Markus R.
    Sharp, Rodney Y.
    JOURNAL OF ALGEBRA, 2009, 321 (02) : 450 - 482
  • [40] On Hilbert-Samuel Coefficients of Graded Local Cohomology Modules
    Freitas, T. H.
    Perez, V. H. Jorge
    Lima, P. H.
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (06) : 2383 - 2397