Control-FREEC viewer: a tool for the visualization and exploration of copy number variation data

被引:1
|
作者
Crippa, Valentina [1 ]
Fina, Emanuela [2 ]
Ramazzotti, Daniele [1 ]
Piazza, Rocco [1 ,3 ]
机构
[1] Univ Milano Bicocca, Dept Med & Surg, Monza, Italy
[2] IRCCS San Raffaele Sci Inst, Dept Thorac Surg, Milan, Italy
[3] Fdn IRCCS San Gerardo Tintori, Monza, Italy
关键词
Copy number variation; Data visualization; Data exploration; CANCER GENOMICS;
D O I
10.1186/s12859-024-05694-w
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundCopy number alterations (CNAs) are genetic changes commonly found in cancer that involve different regions of the genome and impact cancer progression by affecting gene expression and genomic stability. Computational techniques can analyze copy number data obtained from high-throughput sequencing platforms, and various tools visualize and analyze CNAs in cancer genomes, providing insights into genetic mechanisms driving cancer development and progression. However, tools for visualizing copy number data in cancer research have some limitations. In fact, they can be complex to use and require expertise in bioinformatics or computational biology. While copy number data analysis and visualization provide insights into cancer biology, interpreting results can be challenging, and there may be multiple explanations for observed patterns of copy number alterations.ResultsWe created Control-FREEC Viewer, a tool that facilitates effective visualization and exploration of copy number data. With Control-FREEC Viewer, experimental data can be easily loaded by the user. After choosing the reference genome, copy number data are displayed in whole genome or single chromosome view. Gain or loss on a specific gene can be found and visualized on each chromosome. Analysis parameters for subsequent sessions can be stored and images can be exported in raster and vector formats.ConclusionsControl-FREEC Viewer enables users to import and visualize data analyzed by the Control-FREEC tool, as well as by other tools sharing a similar tabular output, providing a comprehensive and intuitive graphical user interface for data visualization.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Chromosome Copy Number Variation and Control in the Ciliate Chilodonella uncinata
    Spring, Kevin J.
    Pham, Stephanie
    Zufall, Rebecca A.
    PLOS ONE, 2013, 8 (02):
  • [32] Amplification ratio control system for copy number variation genotyping
    Guthrie, Philip A. I.
    Gaunt, Tom R.
    Abdollahi, Mohammed R.
    Rodriguez, Santiago
    Lawlor, Debbie A.
    Smith, George Davey
    Day, Ian N. M.
    NUCLEIC ACIDS RESEARCH, 2011, 39 (08) : e54
  • [33] CovCopCan: An efficient tool to detect Copy Number Variation from amplicon sequencing data in inherited diseases and cancer
    Derouault, Paco
    Chauzeix, Jasmine
    Rizzo, David
    Miressi, Federica
    Magdelaine, Corinne
    Bourthoumieu, Sylvie
    Durand, Karine
    Dzugan, Helene
    Feuillard, Jean
    Sturtz, Franck
    Merillou, Stephane
    Lia, Anne-Sophie
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (02)
  • [34] CoNVaQ: a web tool for copy number variation-based association studies
    Larsen, Simon Jonas
    do Canto, Luisa Matos
    Rogatto, Silvia Regina
    Baumbach, Jan
    BMC GENOMICS, 2018, 19
  • [35] inCNV: An Integrated Analysis Tool for Copy Number Variation on Whole Exome Sequencing
    Chanwigoon, Saowwapark
    Piwluang, Sakkayaphab
    Wichadakul, Duangdao
    EVOLUTIONARY BIOINFORMATICS, 2020, 16
  • [36] CoNVaQ: a web tool for copy number variation-based association studies
    Simon Jonas Larsen
    Luisa Matos do Canto
    Silvia Regina Rogatto
    Jan Baumbach
    BMC Genomics, 19
  • [37] The Geo-Seas seismic data viewer: a tool to facilitate control of data access
    Diviacco, P.
    Busato, A.
    BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA, 2013, 54 (03) : 257 - 270
  • [38] Consistent count region-copy number variation (CCR-CNV): an expandable and robust tool for clinical diagnosis of copy number variation at the exon level using next-generation sequencing data
    Kim, Man Jin
    Lee, Sungyoung
    Yun, Hongseok
    Cho, Sung Im
    Kim, Boram
    Lee, Jee-Soo
    Chae, Jong Hee
    Sun, Choonghyun
    Park, Sung Sup
    Seong, Moon-Woo
    GENETICS IN MEDICINE, 2022, 24 (03) : 663 - 672
  • [39] Correction of Copy Number Variation Data Using Principal Component Analysis
    Chen, Jiayu
    Liu, Jingyu
    Calhoun, Vince D.
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2010, : 827 - 828
  • [40] Simple methods for high-density copy number variation data
    Satten, G. A.
    Mulle, J. G.
    Allen, A. S.
    Epstein, M. P.
    Warren, S. T.
    GENETIC EPIDEMIOLOGY, 2007, 31 (06) : 612 - 612