Low-velocity impact response of natural fiber reinforced composites: A comprehensive review on influential parameters

被引:17
|
作者
Siddiqui, M. A. Shadab [1 ]
Rabbi, M. S. [1 ]
Dewanjee, Shapla [1 ]
机构
[1] Chittagong Univ Engn & Technol, Dept Mech Engn, Chittagong 4349, Bangladesh
来源
关键词
Low-velocity impacts; Natural fiber composites; Influential parameters; DAMAGE CHARACTERIZATION; POLYMER COMPOSITES; STACKING-SEQUENCE; EPOXY COMPOSITES; WEIGHT IMPACT; GLASS-FIBER; BEHAVIOR; PERFORMANCE; COMPRESSION; RESISTANCE;
D O I
10.1016/j.jcomc.2023.100422
中图分类号
TB33 [复合材料];
学科分类号
摘要
This review paper provides a thorough overview of current knowledge regarding how natural fiber composite materials react to Low-Velocity Impacts. It highlights the key things that influence their performance and potential uses. Natural fiber composites have gotten more attention since they are cost-effective, lightweight, and biodegradable options. However, they have some limitations compared to traditional synthetic composites when handling impacts, which can restrict their application. Low-Velocity Impacts can cause different types of damage, like delamination, fiber pull-out, and matrix cracking. The material's response to these situations is important for its strength and durability. This review examines, summarizes, and suggests the best options for factors like fiber orientation, stacking sequence, hybridization, geometry, size, impactor kinetic energy and velocity, chemical treatment and matrix effects that influence the natural fiber composite response under LVI conditions. By understanding these parameters, the impact resistance of natural fiber composites can be improved by treating the fibers, mixing them with synthetic fibers, adding nano-fillers, changing the architecture of the fibers and improving NFC's impact resistance and damage tolerance while minimizing damage during manufacturing. The findings provide important implications for using natural fiber composites in the aerospace, vehicle, maritime, and sports equipment industries. Enhancing their ability to handle LVI could expand where they are applied in high-performance situations, offering a sustainable option better for the environment than traditional synthetic materials.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A comprehensive review of fiber-reinforced polymer-matrix composites under low-velocity impact
    Yang, Yuxin
    Miao, Zhengwei
    Liu, Yuewu
    Tu, Huan
    Wei, Yanpeng
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2025,
  • [2] Investigation of low-velocity impact behaviors of polymer composites reinforced with different natural fiber fabrics
    Demir, Mert
    Ekici, Recep
    POLYMER COMPOSITES, 2024, 45 (06) : 4928 - 4946
  • [3] LOW-VELOCITY IMPACT RESPONSE OF PLANT FIBRE REINFORCED HYBRID COMPOSITES
    Shen, Yi O.
    Cai, Shen M.
    Zhong, Jun J.
    Li, Y.
    20TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS, 2015,
  • [4] Low-Velocity Impact Characterization of Fiber-Reinforced Composites with Hygrothermal Effect
    Zai, Behzad Ahmed
    Khan, M. A.
    Park, M. K.
    Shahzad, Majid
    Shahzad, M. A.
    Nisar, Salman
    Khan, S. Z.
    Khan, Kamran
    Shah, Aqueel
    JOURNAL OF TESTING AND EVALUATION, 2019, 47 (01) : 350 - 360
  • [5] Autonomic healing of low-velocity impact damage in fiber-reinforced composites
    Patel, Amit J.
    Sottos, Nancy R.
    Wetzel, Eric D.
    White, Scott R.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2010, 41 (03) : 360 - 368
  • [6] Simulation and Experiment on the Low-Velocity Impact Response of Flax Fabric Reinforced Composites
    Xiong, Xiaoshuang
    Wang, Zisheng
    Zhang, Zihao
    Li, Qiaomin
    Shen, Chen
    Fan, Fei
    Li, Xiang
    Chen, Mingzhang
    MATERIALS, 2023, 16 (09)
  • [7] Low-velocity flexural impact response of fiber-reinforced aerated concrete
    Dey, V.
    Bonakdar, A.
    Mobasher, B.
    CEMENT & CONCRETE COMPOSITES, 2014, 49 : 100 - 110
  • [8] Influence of Low-velocity Impact on Damage Behavior of Carbon Fiber-reinforced Composites
    张小玉
    ZHOU Ruoyu
    陈建中
    Lü Yong
    CAO Dongfeng
    JournalofWuhanUniversityofTechnology(MaterialsScience), 2020, 35 (03) : 482 - 487
  • [9] Partitioning energy during low-velocity impact of RTM fiber-reinforced composites
    Rydin, RW
    Karbhari, VM
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 1998, 21 (09) : 773 - 789
  • [10] Influence of Low-velocity Impact on Damage Behavior of Carbon Fiber-reinforced Composites
    Zhang, Xiaoyu
    Zhou, Ruoyu
    Chen, Jianzhong
    Lu, Yong
    Cao, Dongfeng
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2020, 35 (03): : 482 - 487