La0.6Sr0.4MnO3-Based Fuel Electrode Materials for Solid Oxide Electrolysis Cells Operating under Steam, CO2, and Co-Electrolysis Conditions

被引:1
|
作者
Vibhu, Vaibhav [1 ]
Vinke, Izaak C. [1 ]
Eichel, Ruediger-A. [1 ,2 ]
de Haart, L. G. J. [1 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res, Fundamental Electrochem IEK 9, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Inst Phys Chem, D-52074 Aachen, Germany
关键词
LSM fuel electrode; solid oxide electrolysis cells (SOECs); high-temperature electrolysis; cell performance; electrochemical impedance spectroscopy; HIGH-TEMPERATURE ELECTROLYSIS; ANODE MATERIALS; DOUBLE PEROVSKITE; PERFORMANCE; HYDROGEN; DEGRADATION; DURABILITY; CONDUCTIVITY; STABILITY; PHASE;
D O I
10.3390/en16207115
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The conventional Ni-YSZ (yttria-stabilized zirconia) fuel electrode experiences severe degradation due to Ni- agglomeration and migration away from the electrolyte. Therefore, herein, we have considered Ni free electrodes, i.e., La0.6Sr0.4MnO3-delta (LSM)-based perovskite oxides as fuel electrodes. The LSM perovskite phase transforms into a Ruddlesden-Popper LSM (RP-LSM) phase with exsolved MnOx under reducing atmospheres. The RP-LSM is mainly interesting due to its good electrical conductivity, redox stability, and acceptable electrochemical behaviour. In this work, we synthesized the LSM powder and characterized it using several methods including X-ray diffraction (XRD), thermogravimetry analyses (TGA), four-probe conductivity, and scanning electron microscope with energy-dispersive X-ray spectroscopy (SEM-EDX). Finally, the electrolyte-supported single cells were fabricated and electrochemically characterized using AC and DC techniques under electrolysis conditions. In addition to pure LSM fuel electrodes, we have also investigated the electrochemical behaviour of LSM + YSZ (50:50) and LSM + GDC (50:50) composite fuel electrodes. The single cells containing LSM and LSM + GDC fuel electrodes show higher cell performance than LSM + YSZ. For instance, current densities of 1, 1.03, and 0.51 A center dot cm(-2) at 1.5 V are obtained for LSM, LSM + GDC, and LSM + YSZ fuel electrodes containing single cells, respectively, with a 50% N-2 and 50% H2O feed gas mixture. Moreover, the performance of the cell was also investigated under co-electrolysis with 50% CO2 and 50% H2O and under direct CO2 electrolysis conditions with 100% CO2 fuel gas.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Operating maps of high temperature H2O electrolysis and H2O+CO2 co-electrolysis in solid oxide cells
    Aicart, J.
    Usseglio-Viretta, F.
    Laurencin, J.
    Petitjean, M.
    Delette, G.
    Dessemond, L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (39) : 17233 - 17246
  • [32] Electrochemical performance and durability of flat-tube solid oxide electrolysis cells for H2O/CO2 co-electrolysis
    Xi, Chengqiao
    Sang, Junkang
    Wu, Anqi
    Yang, Jun
    Qi, Xiaopeng
    Guan, Wanbing
    Wang, Jianxin
    Singhal, Subhash C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (18) : 10166 - 10174
  • [33] Materials of solid oxide electrolysis cells for H2O and CO2 electrolysis: A review
    Qiu, Peng
    Li, Cheng
    Liu, Bo
    Yan, Dong
    Li, Jian
    Jia, Lichao
    JOURNAL OF ADVANCED CERAMICS, 2023, 12 (08): : 1463 - 1510
  • [34] Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: Recent advance in cathodes
    Zhang, Xiaomin
    Song, Yuefeng
    Wang, Guoxiong
    Bao, Xinhe
    JOURNAL OF ENERGY CHEMISTRY, 2017, 26 (05) : 839 - 853
  • [35] Infiltrated mesoporous oxygen electrodes for high temperature co-electrolysis of H2O and CO2 in solid oxide electrolysis cells
    Hernandez, E.
    Baiutti, F.
    Morata, A.
    Torrell, M.
    Tarancon, A.
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (20) : 9699 - 9707
  • [36] Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: Recent advance in cathodes
    Xiaomin Zhang
    Yuefeng Song
    Guoxiong Wang
    Xinhe Bao
    Journal of Energy Chemistry, 2017, 26 (05) : 839 - 853
  • [37] A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis
    Menon, Vikram
    Fu, Qingxi
    Janardhanan, Vinod M.
    Deutschmann, Olaf
    JOURNAL OF POWER SOURCES, 2015, 274 : 768 - 781
  • [38] Carbon Deposition in Solid Oxide Cells during Co-Electrolysis of H2O and CO2
    Tao, Youkun
    Ebbesen, Sune Dalgaard
    Mogensen, Mogens Bjerg
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) : F337 - F343
  • [39] Performance of CO2 electrolysis using solid oxide electrolysis cell with Ni-YSZ as fuel electrode under different fuel atmospheres
    Wu, Anqi
    Han, Beibei
    Zhu, Liangzhu
    Guan, Wanbing
    Singhal, Subhash C.
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2022, 19 (11) : 1209 - 1220
  • [40] Symmetrical La3+-doped Sr2Fe1.5Ni0.1Mo0.4O6-δ Electrode Solid Oxide Fuel Cells for Pure CO2 Electrolysis
    Wang Yue
    Cui Changsong
    Wang Shiwei
    Zhan Zhongliang
    JOURNAL OF INORGANIC MATERIALS, 2021, 36 (12) : 1323 - 1329