Machine learning-based mortality prediction in hip fracture patients using biomarkers

被引:1
|
作者
Asrian, George [1 ,3 ]
Suri, Abhinav [2 ]
Rajapakse, Chamith [1 ]
机构
[1] Univ Penn, Philadelphia, PA USA
[2] Univ Calif Los Angeles, Ophthalmol, Los Angeles, CA USA
[3] Univ Penn, 1500 Hamilton St, Apartment 851, Philadelphia, PA 19130 USA
基金
美国国家卫生研究院;
关键词
biomarkers; fracture; hip; 1-YEAR MORTALITY; OSTEOPOROSIS; BURDEN; OLDER; RISK;
D O I
10.1002/jor.25675
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
The purpose of this retrospective study was to assess whether mortality following a hip fracture can be predicted by a machine learning model trained on basic blood and lab test data as well as basic demographic data. Additionally, the purpose was to identify the key variables most associated with 1-, 5-, and 10-year mortality and investigate their clinical significance. Input data included 3751 hip fracture patient records sourced from the Medical Information Mart for Intensive Care IV database, which provided records from in-hospital database systems at the Beth Israel Deaconess Medical Center. The 1-year mortality rate for all patients studied was 21% and for those aged 80+ was 29%. We assessed 10 different machine learning classification models, finding LightGBM to have the strongest 1-year mortality prediction performance, with accuracy of 81%, AUC of 0.79, sensitivity of 0.34, and specificity of 0.98 on the test set. The strongest-weighted features of the 1-year model included age, glucose, red blood cell distribution width, mean corpuscular hemoglobin concentration, white blood cells, urea nitrogen, prothrombin time, platelet count, calcium levels, and partial thromboplastin time. Most of these were also in the top 10 features of the LightGBM 5- and 10-year prediction models trained. Testing for these high-ranking biomarkers in new hip fracture patients can aid clinicians in assessing the likelihood of poor outcomes for hip fracture patients, and additional research can use these biomarkers to develop a mortality risk score.
引用
下载
收藏
页码:395 / 403
页数:9
相关论文
共 50 条
  • [21] Machine learning-based in-hospital mortality prediction models for patients with acute coronary syndrome
    Ke, Jun
    Chen, Yiwei
    Wang, Xiaoping
    Wu, Zhiyong
    Zhang, Qiongyao
    Lian, Yangpeng
    Chen, Feng
    AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2022, 53 : 127 - 134
  • [22] Machine learning-based risk prediction of acute kidney disease and hospital mortality in older patients
    Wang, Xinyuan
    Xu, Lingyu
    Guan, Chen
    Xu, Daojun
    Che, Lin
    Wang, Yanfei
    Man, Xiaofei
    Li, Chenyu
    Xu, Yan
    FRONTIERS IN MEDICINE, 2024, 11
  • [23] Towards Hip Fracture Prediction using Finite Element analysis and Machine Learning
    Missoum, Samy
    Jiang, Peng
    Hu, Chengcheng
    Hsieh, Pei-Shan
    Chen, Zhao
    JOURNAL OF BONE AND MINERAL RESEARCH, 2013, 28
  • [24] Machine learning-based prediction of transfusion
    Mitterecker, Andreas
    Hofmann, Axel
    Trentino, Kevin M.
    Lloyd, Adam
    Leahy, Michael F.
    Schwarzbauer, Karin
    Tschoellitsch, Thomas
    Boeck, Carl
    Hochreiter, Sepp
    Meier, Jens
    TRANSFUSION, 2020, 60 (09) : 1977 - 1986
  • [25] Machine learning-based prediction models for accidental hypothermia patients
    Yohei Okada
    Tasuku Matsuyama
    Sachiko Morita
    Naoki Ehara
    Nobuhiro Miyamae
    Takaaki Jo
    Yasuyuki Sumida
    Nobunaga Okada
    Makoto Watanabe
    Masahiro Nozawa
    Ayumu Tsuruoka
    Yoshihiro Fujimoto
    Yoshiki Okumura
    Tetsuhisa Kitamura
    Ryoji Iiduka
    Shigeru Ohtsuru
    Journal of Intensive Care, 9
  • [26] New machine learning-based prediction models for fracture energy of asphalt mixtures
    Majidifard, Hamed
    Jahangiri, Behnam
    Buttlar, William G.
    Alavi, Amir H.
    MEASUREMENT, 2019, 135 : 438 - 451
  • [27] Machine learning-based prediction of intraoperative hypoxemia for pediatric patients
    Park, Jung-Bin
    Lee, Ho-Jong
    Yang, Hyun-Lim
    Kim, Eun-Hee
    Lee, Hyung-Chul
    Jung, Chul-Woo
    Kim, Hee-Soo
    PLOS ONE, 2023, 18 (03):
  • [28] Machine learning-based prediction models for accidental hypothermia patients
    Okada, Yohei
    Matsuyama, Tasuku
    Morita, Sachiko
    Ehara, Naoki
    Miyamae, Nobuhiro
    Jo, Takaaki
    Sumida, Yasuyuki
    Okada, Nobunaga
    Watanabe, Makoto
    Nozawa, Masahiro
    Tsuruoka, Ayumu
    Fujimoto, Yoshihiro
    Okumura, Yoshiki
    Kitamura, Tetsuhisa
    Iiduka, Ryoji
    Ohtsuru, Shigeru
    JOURNAL OF INTENSIVE CARE, 2021, 9 (01)
  • [29] Multimodal Machine Learning for 30-Days Post-Operative Mortality Prediction of Elderly Hip Fracture Patients
    Yenidogan, Berk
    Pathak, Shreyasi
    Geerdink, Jeroen
    Hegeman, Johannes H.
    van Keulen, Maurice
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 508 - 516
  • [30] Machine Learning-Based Precipitation Prediction Using Cloud Properties
    Yakubu, Abdulaziz Tunde
    Abayomi, Abdultaofeek
    Chetty, Naven
    HYBRID INTELLIGENT SYSTEMS, HIS 2021, 2022, 420 : 243 - 252