How Much Data Is Required for a Transformer-Based Infrared Small Target Detection?

被引:0
|
作者
Uzun, Engin [1 ]
Ergezer, Hamza [2 ]
机构
[1] Aselsan MGEO Business Sector, Ankara, Turkiye
[2] Aselsan Res, Ankara, Turkiye
来源
关键词
Infrared; Small Target Detection; Transformer; ENHANCEMENT;
D O I
10.1117/12.2662816
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In most state-of-the-art (SoTA) infrared small target detection algorithms, image regions are processed locally. More recently, some transformer-based algorithms have been proposed that account for separate image regions to detect small objects. Besides their success, transformer-based algorithms require more data when compared to classical methods. In these algorithms, massive datasets are used to achieve comparable performance with the SoTA methods for the RGB domain. There is no solid work in the literature about how much data is required to develop a transformer-based small target detection algorithm. By its nature, a small target does not contain discriminative contextual information. Thus, its blob-like shape and the contrast difference between the target and background are the main features exploited by the literature. Analyzing the required amount of data to obtain acceptable accuracy for infrared small target detection is the main motivation of this study.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Survey of Transformer-Based Object Detection Algorithms
    Li, Jian
    Du, Jianqiang
    Zhu, Yanchen
    Guo, Yongkun
    Computer Engineering and Applications, 2023, 59 (10) : 48 - 64
  • [32] Transformer-based mass detection in digital mammograms
    Betancourt Tarifa A.S.
    Marrocco C.
    Molinara M.
    Tortorella F.
    Bria A.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (03) : 2723 - 2737
  • [33] BlinkLinMulT: Transformer-Based Eye Blink Detection
    Fodor, Adam
    Fenech, Kristian
    Lorincz, Andras
    JOURNAL OF IMAGING, 2023, 9 (10)
  • [34] Transformer-Based Intrusion Detection for IoT Networks
    Akuthota, Uday Chandra
    Bhargava, Lava
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 6062 - 6067
  • [35] A transformer-based approach to irony and sarcasm detection
    Rolandos Alexandros Potamias
    Georgios Siolas
    Andreas - Georgios Stafylopatis
    Neural Computing and Applications, 2020, 32 : 17309 - 17320
  • [36] Vision Transformer-Based Tailing Detection in Videos
    Lee, Jaewoo
    Lee, Sungjun
    Cho, Wonki
    Siddiqui, Zahid Ali
    Park, Unsang
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [37] Transformer-based vehicle detection for surveillance images
    Jin, Zhi
    Zhang, Qian
    Gou, Chao
    Lu, Qiang
    Li, Xiying
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (05)
  • [38] A transformer-based IDE plugin for vulnerability detection
    Mamede, Claudia
    Pinconschi, Eduard
    Abreu, Rui
    PROCEEDINGS OF THE 37TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, ASE 2022, 2022,
  • [39] Personality BERT: A Transformer-Based Model for Personality Detection from Textual Data
    Jain, Dipika
    Kumar, Akshi
    Beniwal, Rohit
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 515 - 522
  • [40] Adaptation of Transformer-Based Models for Depression Detection
    Adebanji, Olaronke O.
    Ojo, Olumide E.
    Calvo, Hiram
    Gelbukh, Irina
    Sidorov, Grigori
    COMPUTACION Y SISTEMAS, 2024, 28 (01): : 151 - 165