Few-shot logo detection

被引:2
|
作者
Hou, Sujuan [1 ]
Liu, Wenjie [1 ]
Karim, Awudu [2 ]
Jia, Zhixiang [1 ]
Jia, Weikuan [1 ]
Zheng, Yuanjie [1 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan, Peoples R China
[2] Beijing Univ Technol, Sch Engn, Beijing, Peoples R China
关键词
computer vision; object detection; RECOGNITION; NETWORK;
D O I
10.1049/cvi2.12205
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The proliferation of deep learning has driven research into deep learning-based logo detection, which usually needs a large number of annotated data to train the model. However, due to the occasional appearance of new brands or the high cost of annotation, the number of training data is limited. Against this backdrop, the authors adapt the few-shot object detection into logo detection, and thus present a cutting-edge method called Double Classification Head (DCH) for Few-Shot Logo Detection (DCH-FSLogo), which aims at detecting the unseen logo classes using few annotated data. Unlike the traditional few-shot detection, some logo objects are similar to their backgrounds and have diverse shapes as well. For this reason, the authors adopt balanced feature pyramid and deformable Region of Interest pooling in DCH-FSLogo, this enhances the feature extraction capability and adapts to the different logo shapes. In addition, we introduce the DCH for few-shot logo detection to detect logo objects using few annotated data. Specifically, we use an extra classification head for the base classes to ease the influence from the novel classes. The experimental results on four datasets, namely: FlickrLogos-32, FoodLogoDet-1500-100, LogoDet-3K-100 and QMUL-OpenLogo-100, demonstrate that our method achieves better performance.
引用
收藏
页码:586 / 598
页数:13
相关论文
共 50 条
  • [21] Few-Shot Steel Surface Defect Detection
    Wang, Haohan
    Li, Zhuoling
    Wang, Haoqian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [22] Hallucination Improves Few-Shot Object Detection
    Zhang, Weilin
    Wang, Yu-Xiong
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13003 - 13012
  • [23] Few-Shot Object Detection with Model Calibration
    Fan, Qi
    Tang, Chi-Keung
    Tai, Yu-Wing
    COMPUTER VISION, ECCV 2022, PT XIX, 2022, 13679 : 720 - 739
  • [24] Few-Shot Object Detection: A Comprehensive Survey
    Koehler, Mona
    Eisenbach, Markus
    Gross, Horst-Michael
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 11958 - 11978
  • [25] Few-shot online anomaly detection and segmentation
    Wei, Shenxing
    Wei, Xing
    Ma, Zhiheng
    Dong, Songlin
    Zhang, Shaochen
    Gong, Yihong
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [26] A Closer Look at Few-Shot Object Detection
    Liu, Yuhao
    Dong, Le
    He, Tengyang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 430 - 447
  • [27] HoloDetect: Few-Shot Learning for Error Detection
    Heidari, Alireza
    McGrath, Joshua
    Ilyas, Ihab F.
    Rekatsinas, Theodoros
    SIGMOD '19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2019, : 829 - 846
  • [28] Few-Shot Anomaly Detection via Personalization
    Kwak, Sangkyung
    Jeong, Jongheon
    Lee, Hankook
    Kim, Woohyuck
    Seo, Dongho
    Yun, Woojin
    Lee, Wonjin
    Shin, Jinwoo
    IEEE ACCESS, 2024, 12 : 11035 - 11051
  • [29] Registration Based Few-Shot Anomaly Detection
    Huang, Chaoqin
    Guan, Haoyan
    Jiang, Aofan
    Zhang, Ya
    Spratling, Michael
    Wang, Yan-Feng
    COMPUTER VISION, ECCV 2022, PT XXIV, 2022, 13684 : 303 - 319
  • [30] Industrial few-shot fractal object detection
    Haoran Huang
    Xiaochuan Luo
    Chen Yang
    Neural Computing and Applications, 2023, 35 : 21055 - 21069