Rigid-tough Coupling of the Solid Electrolyte Interphase Towards Long-Life Lithium Metal Batteries

被引:18
|
作者
Xu, Hantao [1 ,4 ]
Sun, Chenghao [1 ,5 ]
Zhang, Shu [1 ,2 ,3 ]
Zhang, Huanrui [1 ,2 ,3 ]
Liu, Zhi [1 ]
Tang, Yue [7 ,8 ,9 ]
Cui, Guanglei [1 ,2 ,3 ,6 ]
机构
[1] Chinese Acad Sci, Qingdao Ind Energy Storage Res Inst, Qingdao Inst Bioenergy & Bioprocess Technol, 189 Songling Rd, Qingdao 266101, Peoples R China
[2] Shandong Energy Inst, Qingdao 266042, Peoples R China
[3] Qingdao New Energy Shandong Lab, Qingdao, Peoples R China
[4] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[5] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, Qingdao 266042, Peoples R China
[6] Univ Chinese Acad Sci, Sch Future Technol, Beijing 100049, Peoples R China
[7] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA
[8] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA
[9] Shandong Normal Univ, Coll Chem Engn & Mat Sci, Jinan 250014, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
energy storage; in situ polymerization; quasi-solid-state polymer electrolytes; lithium metal batteries; rigid-tough coupling; ANODE;
D O I
10.1002/cssc.202202334
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal batteries are highly pursued for energy storage applications due to superior energy densities. However, fast battery decay accompanied by lithium dendrite growth occurs mainly owing to solid electrolyte interphase (SEI) failure. To address this, a novel functional quasi-solid-state polymer electrolyte is developed through in situ copolymerization of a cyclic carbonate-containing acrylate and a urea-based acrylate monomer in commercial available electrolyte. Based on the rigid-tough coupling design of SEI, anionic polymerization of cyclic carbonate units and reversible hydrogen bonding formed using urea motifs on the polymer matrix can take place at SEI. This mechanically stabilizes SEI and thus helps achieve uniform lithium deposition behaviors and non-dendrite growth. Thus, the superior cycling performance of LiNi0.6Co0.2Mn0.2O2/Li metal batteries is promoted by the formation of compatible SEI. This design philosophy to build mechanochemically stable SEI provides a good example for realizing advanced lithium metal batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Diethyl phenylphosphonite contributing to solid electrolyte interphase and cathode electrolyte interphase for lithium metal batteries
    Miao, Chunxia
    Qi, Shihan
    Liang, Kang
    Qi, Yanli
    Huang, Junda
    Wu, Mingguang
    Zhao, Hongshun
    Liu, Jiandong
    Ren, Yurong
    Ma, Jianmin
    JOURNAL OF ENERGY CHEMISTRY, 2021, 63 : 566 - 573
  • [22] Diethyl phenylphosphonite contributing to solid electrolyte interphase and cathode electrolyte interphase for lithium metal batteries
    Chunxia Miao
    Shihan Qi
    Kang Liang
    Yanli Qi
    Junda Huang
    Mingguang Wu
    Hongshun Zhao
    Jiandong Liu
    Yurong Ren
    Jianmin Ma
    Journal of Energy Chemistry, 2021, 63 (12) : 566 - 573
  • [23] Diethyl phenylphosphonite contributing to solid electrolyte interphase and cathode electrolyte interphase for lithium metal batteries
    Miao, Chunxia
    Qi, Shihan
    Liang, Kang
    Qi, Yanli
    Huang, Junda
    Wu, Mingguang
    Zhao, Hongshun
    Liu, Jiandong
    Ren, Yurong
    Ma, Jianmin
    Ren, Yurong (ryrchem@cczu.edu.cn), 1600, Elsevier B.V. (63): : 566 - 573
  • [24] A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries
    Gu, Sui
    Huang, Xiao
    Wang, Qing
    Jin, Jun
    Wang, Qingsong
    Wen, Zhaoyin
    Qian, Rong
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (27) : 13971 - 13975
  • [25] A locally solvent-tethered polymer electrolyte for long-life lithium metal batteries
    Zhu, Yanfei
    Lao, Zhoujie
    Zhang, Mengtian
    Hou, Tingzheng
    Xiao, Xiao
    Piao, Zhihong
    Lu, Gongxun
    Han, Zhiyuan
    Gao, Runhua
    Nie, Lu
    Wu, Xinru
    Song, Yanze
    Ji, Chaoyuan
    Wang, Jian
    Zhou, Guangmin
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [26] Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries
    Wang, Mengwen
    Sun, Qintao
    Liu, Yue
    Yan, Zhengan
    Xu, Qiyu
    Wu, Yuchen
    Cheng, Tao
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2024, 43 (02)
  • [27] Lithiated Copper Polyphthalocyanine with Extended π-Conjugation Induces LiF-Rich Solid Electrolyte Interphase toward Long-Life Solid-State Lithium-Metal Batteries
    Wang, Haonan
    Cheng, Hang
    Li, Dinggen
    Li, Faqiang
    Wei, Ying
    Huang, Kai
    Jiang, Bowen
    Xu, Henghui
    Huang, Yunhui
    ADVANCED ENERGY MATERIALS, 2023, 13 (16)
  • [28] High Lithium Ion Conductivity LiF/GO Solid Electrolyte Interphase Inhibiting the Shuttle of Lithium Polysulfides in Long-Life Li-S Batteries
    Ni, Xuyan
    Qian, Tao
    Liu, Xuejun
    Xu, Na
    Liu, Jie
    Yan, Chenglin
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (13)
  • [29] Designing gradient solid electrolyte interphase for stable lithium metal batteries
    Deng, Wenjing
    Wang, Xiaolei
    GREEN ENERGY & ENVIRONMENT, 2022, 7 (06) : 1129 - 1131
  • [30] Perspective on solid-electrolyte interphase regulation for lithium metal batteries
    Wu, Mingguang
    Li, Yong
    Liu, Xinhua
    Yang, Shichun
    Ma, Jianmin
    Dou, Shixue
    SMARTMAT, 2021, 2 (01): : 5 - 11