Rigid-tough Coupling of the Solid Electrolyte Interphase Towards Long-Life Lithium Metal Batteries

被引:18
|
作者
Xu, Hantao [1 ,4 ]
Sun, Chenghao [1 ,5 ]
Zhang, Shu [1 ,2 ,3 ]
Zhang, Huanrui [1 ,2 ,3 ]
Liu, Zhi [1 ]
Tang, Yue [7 ,8 ,9 ]
Cui, Guanglei [1 ,2 ,3 ,6 ]
机构
[1] Chinese Acad Sci, Qingdao Ind Energy Storage Res Inst, Qingdao Inst Bioenergy & Bioprocess Technol, 189 Songling Rd, Qingdao 266101, Peoples R China
[2] Shandong Energy Inst, Qingdao 266042, Peoples R China
[3] Qingdao New Energy Shandong Lab, Qingdao, Peoples R China
[4] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[5] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, Qingdao 266042, Peoples R China
[6] Univ Chinese Acad Sci, Sch Future Technol, Beijing 100049, Peoples R China
[7] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA
[8] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA
[9] Shandong Normal Univ, Coll Chem Engn & Mat Sci, Jinan 250014, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
energy storage; in situ polymerization; quasi-solid-state polymer electrolytes; lithium metal batteries; rigid-tough coupling; ANODE;
D O I
10.1002/cssc.202202334
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal batteries are highly pursued for energy storage applications due to superior energy densities. However, fast battery decay accompanied by lithium dendrite growth occurs mainly owing to solid electrolyte interphase (SEI) failure. To address this, a novel functional quasi-solid-state polymer electrolyte is developed through in situ copolymerization of a cyclic carbonate-containing acrylate and a urea-based acrylate monomer in commercial available electrolyte. Based on the rigid-tough coupling design of SEI, anionic polymerization of cyclic carbonate units and reversible hydrogen bonding formed using urea motifs on the polymer matrix can take place at SEI. This mechanically stabilizes SEI and thus helps achieve uniform lithium deposition behaviors and non-dendrite growth. Thus, the superior cycling performance of LiNi0.6Co0.2Mn0.2O2/Li metal batteries is promoted by the formation of compatible SEI. This design philosophy to build mechanochemically stable SEI provides a good example for realizing advanced lithium metal batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes
    Xu, Shan-Min
    Duan, Hui
    Shi, Ji-Lei
    Zuo, Tong-Tong
    Hu, Xin-Cheng
    Lang, Shuang-Yan
    Yan, Min
    Liang, Jia-Yan
    Yang, Yu-Guo
    Kong, Qing-Hua
    Zhang, Xing
    Guo, Yu-Guo
    NANO RESEARCH, 2020, 13 (02) : 430 - 436
  • [2] In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes
    Shan-Min Xu
    Hui Duan
    Ji-Lei Shi
    Tong-Tong Zuo
    Xin-Cheng Hu
    Shuang-Yan Lang
    Min Yan
    Jia-Yan Liang
    Yu-Guo Yang
    Qing-Hua Kong
    Xing Zhang
    Yu-Guo Guo
    Nano Research, 2020, 13 : 430 - 436
  • [3] Stable Solid Electrolyte Interphase for Long-Life Potassium Metal Batteries
    Park, Jimin
    Jeong, Yeseul
    Alfaruqi, Muhammad Hilmy
    Liu, Yangyang
    Xu, Xieyu
    Xiong, Shizhao
    Jung, Min-Gi
    Jung, Hun-Gi
    Kim, Jaekook
    Hwang, Jang-Yeon
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2022, 7 (01): : 401 - 409
  • [4] A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes
    Li, Nian-Wu
    Shi, Yang
    Yin, Ya-Xia
    Zeng, Xian-Xiang
    Li, Jin-Yi
    Li, Cong-Ju
    Wan, Li-Jun
    Wen, Rui
    Guo, Yu-Guo
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (06) : 1505 - 1509
  • [5] Li-B alloy with artificial solid electrolyte interphase layer for long-life lithium metal batteries
    Zhang, Xianggong
    Sui, Xin
    Zhou, Sisi
    Tang, Cong
    Wang, Rui
    SOLID STATE IONICS, 2020, 354
  • [6] Fluorinated Artificial Solid−Electrolyte−Interphase Layer for Long-Life Sodium Metal Batteries
    Damircheli R.
    Hoang B.
    Ferrari V.C.
    Lin C.-F.
    ACS Applied Materials and Interfaces, 2023, 15 (47): : 54915 - 54922
  • [7] Fluorinated Artificial Solid-Electrolyte-Interphase Layer for Long-Life Sodium Metal Batteries
    Damircheli, Roya
    Hoang, Binh
    Castagna Ferrari, Victoria
    Lin, Chuan-Fu
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (47) : 54915 - 54922
  • [8] Long-Life and High-Rate-Charging Lithium Metal Batteries Enabled by a Flexible Active Solid Electrolyte Interphase Layer
    Zhang, Da
    Gu, Rong
    Guo, Wenyao
    Xu, Qunjie
    Li, Hexing
    Min, YuLin
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (50) : 60678 - 60688
  • [9] Engineering a Dynamic Solvent-Phobic Liquid Electrolyte Interphase for Long-Life Lithium Metal Batteries
    Kang, Qi
    Li, Yong
    Zhuang, Zechao
    Yang, Huijun
    Luo, Liuxuan
    Xu, Jie
    Wang, Jian
    Guan, Qinghua
    Zhu, Han
    Zuo, Yinze
    Wang, Dong
    Pei, Fei
    Ma, Lianbo
    Zhao, Jin
    Li, Pengli
    Lin, Ying
    Liu, Yijie
    Shi, Kunming
    Li, Hongfei
    Zhu, Yingke
    Chen, Jie
    Liu, Fei
    Wu, Guangning
    Yang, Jun
    Jiang, Pingkai
    Huang, Xingyi
    ADVANCED MATERIALS, 2024, 36 (18)
  • [10] Building a stable artificial solid electrolyte interphase on lithium metal anodes toward long-life Li-O2 batteries
    Chen, Jinbiao
    Li, Dongdong
    Lin, Kaiji
    Cheng, Yifeng
    Shi, Zhicong
    JOURNAL OF POWER SOURCES, 2022, 540