Effects of absorption pressure and temperature on NH3-H2O-LiBr-TiO2 nanofluid absorption performance and system COP

被引:1
|
作者
Jin, Zhenghao [1 ]
Li, Shuhong [1 ]
Zhou, Runfa [1 ]
Xu, Mengkai [1 ]
Jiang, Weixue [2 ]
Du, Kai [1 ]
机构
[1] Southeast Univ, Sch Energy & Environm, 2 Sipailou, Nanjing 210096, Peoples R China
[2] Yangzhou Univ, Coll Elect Energy & Power Engn, Yangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Mass transfer; Absorption; Nanofluid; Experimental investigation; VAPOR-LIQUID-EQUILIBRIUM; PLUS LITHIUM-NITRATE; REFRIGERATION SYSTEM; WORKING FLUIDS; WATER; ENHANCEMENT; NANOPARTICLES; VISCOSITY; DESIGN;
D O I
10.1016/j.applthermaleng.2022.119353
中图分类号
O414.1 [热力学];
学科分类号
摘要
Adding nanoparticles can enhance the mass and heat transfer of basic fluid, improving the coefficient of per-formance(COP) of the absorption refrigeration system(ARS). However, there are few experimental studies on the effects of absorption pressure and temperature on the absorption performance of nanofluid in an actual ARS. Therefore, the TiO2 nanoparticles are added to the NH3 -H2O - LiBr working fluid. The difference in ammonia mass fraction between the inlet and outlet solution of the absorber (Delta e'a) is compared with when the solution is absorbed saturated (Delta ea). The results indicate that the Delta e'a and system COP increase when the absorption temperature decreases, the absorption pressure increases, or the TiO2 mass fraction increases. The ratio Delta e'a/Delta ea is used to evaluate the absorption efficiency of the nanofluid. The positive effects of nanofluid on the absorption efficiency and COP slightly increase when absorption temperature increases, but decrease when the absorption pressure is greater than 0.31 MPa. For all of our test groups, the greatest improvement in absorption efficiency is 85 %, and the largest improvement in COP is 13.7 %.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Experimental investigation on performance of ammonia absorption refrigeration system with TiO2 nanofluid
    Jiang, Weixue
    Li, Shuhong
    Yang, Liu
    Du, Kai
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2019, 98 : 80 - 88
  • [42] Performance evaluation of absorption chiller using LiBr+H2N(CH2)2OH+H2O, LiBr+HO(CH2)3OH+H2O, and LiBr+(HOCH2CH2)2NH+H2O as working fluids
    Kim, JS
    Park, Y
    Lee, H
    [J]. APPLIED THERMAL ENGINEERING, 1999, 19 (02) : 217 - 225
  • [43] Modeling and performance analysis of an absorption chiller with a microchannel membrane-based absorber using LiBr-H2O, LiCl-H2O, and LiNO3-NH3
    de Vega, Mercedes
    Venegas, Maria
    Garcia-Hernando, Nestor
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (11) : 3544 - 3558
  • [44] Simulation of a 20-ton LiBr/H2O absorption cooling system
    Wardono, B
    Nelson, RM
    [J]. ASHRAE TRANSACTIONS 1996, VOL 102, PT 1, 1996, 102 : 96 - 103
  • [45] A theoretical analysis of a novel NH3-H2O absorption refrigerating system
    Dawoud, BA
    El-Ghalban, AR
    [J]. PROCEEDINGS OF THE INTERNATIONAL SORPTION HEAT PUMP CONFERENCE, 2002, : 194 - 203
  • [46] SIMULATION RESEARCH ON ABSORPTION REFRIGERATION SYSTEM BASED ON NH3-H2O-LiBr VAPOR-LIQUID EQUILIBRIUM CALCULATION MODEL
    Wang, Shan
    Li, Shuhong
    Xu, Mengkai
    Jin, Zhenghao
    Xu, Chengcheng
    [J]. THERMAL SCIENCE, 2022, 26 (02): : 1825 - 1840
  • [47] Development of a small-scale H2O-LiBr absorption cooling system
    Tan, YW
    Jambunathan, K
    [J]. HEAT TRANSFER SCIENCE AND TECHNOLOGY 2000, 2000, : 803 - 808
  • [48] Application of the exergetic cost theory to the LiBr/H2O vapour absorption system
    Misra, RD
    Sahoo, PK
    Gupta, A
    [J]. ENERGY, 2002, 27 (11) : 1009 - 1025
  • [49] Simulation of a double-effect LiBr/H2O absorption cooling system
    Wardono, Bagas
    Nelson, Ron M.
    [J]. ASHRAE Journal, 1996, 38 (10) : 32 - 38
  • [50] The effect of chemical surfactants on the absorption performance during NH3/H2O bubble absorption process
    Kim, JK
    Jung, JY
    Kim, JH
    Kim, MG
    Kashiwagi, T
    Kang, YT
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2006, 29 (02): : 170 - 177