Regulated translocation of neutral sphingomyelinase-2 to the plasma membrane drives insulin resistance in steatotic hepatocytes

被引:4
|
作者
El-Amouri, S. [1 ]
Karakashian, A. [1 ]
Bieberich, E. [1 ,2 ]
Nikolova-Karakashian, M. [1 ]
机构
[1] Univ Kentucky, Coll Med, Dept Physiol, Lexington, KY 40506 USA
[2] VA Med Ctr, Lexington, KY USA
关键词
ceramides; sphingolipids; plasma membrane; palmitoylation; insulin resistance; neutral sphingomyelinase 2; smpd3; palmitic acid; Akt; hepatocytes; SPHINGOLIPID BIOSYNTHESIS; CLINICAL CHARACTERISTICS; ABNORMAL METHYLATION; CYSTEINE RESIDUES; OXIDATIVE STRESS; RAT HEPATOCYTES; CERAMIDE; ACTIVATION; PROTEIN; INHIBITION;
D O I
10.1016/j.jlr.2023.100435
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Obesity-associated diabetes is linked to the accumulation of ceramide in various organs, including the liver. The exact mechanisms by which ceramide contributes to diabetic pathology are unclear, but one proposed scenario is that ceramide accumulation may inhibit insulin signaling path-ways. It is unknown however whether the excess ceramide is generated proximal to the insulin receptor, that is, at the plasma membrane (PM), where it could affect the insulin signaling pathway directly, or the onset of insulin resistance is due to ceramide-induced mitochondrial dysfunction and/or lipotoxicity. Using hepatic cell lines and primary cultures, gain-and loss-of function approach, and state -of-the art lipid imaging, this study shows that PM-associated neutral sphingomyelinase 2 (nSMase2) regulates ceramide homeostasis in fat-loaded hepatocytes and drives the onset of insulin resistance. Our results provide evidence of a regulated trans-location of nSMase2 to the PM which leads to local generation of ceramide and insulin resistance in cells treated with palmitic acid (PAL), a type of fat commonly found in diabetogenic diets. Oleic acid, which also causes accumulation of lipid droplets, does not induce nSMase2 translocation and insulin resistance. Experiments using the acylbiotin exchange method to quantify protein palmitoylation show that cellular PAL abundance regulates the rate of nSMase2 palmitoylation. Furthermore, while inhibition of nSMase2 with GW4869 prevents PAL-induced insulin resistance, the overexpression of wild type nSMase2 but not palmitoylation-defective mutant protein potentiates the suppressive effect of PAL on insulin signaling. Overall, this study identifies nSMase2 as a novel component of the mechanism of insulin resistance onset in fat-loaded hepatocytes, that is, cell-autonomous and driven by PAL.
引用
收藏
页数:17
相关论文
共 42 条