Quantifying Influence of the Solid-Electrolyte Interphase in Ammonia Electrosynthesis

被引:13
|
作者
Mcshane, Eric J. [1 ]
Niemann, Valerie A. [1 ,2 ]
Benedek, Peter [1 ,2 ]
Fu, Xianbiao [3 ]
Nielander, Adam C. [2 ,4 ]
Chorkendorff, Ib [3 ]
Jaramillo, Thomas F. [1 ,2 ,4 ]
Cargnello, Matteo [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, SUNCAT Ctr Interface Sci & Catalysis, Stanford, CA 94305 USA
[3] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
[4] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
关键词
ELECTROCHEMICAL REDUCTION; NITROGEN REDUCTION; LITHIUM; STABILITY; GRAPHITE; N2;
D O I
10.1021/acsenergylett.3c01534
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The solid-electrolyte interphase (SEI) is often invoked to rationalize trends observed during lithium-mediated electrochemical ammonia synthesis (LiMEAS), but quantitative analysis of the SEI constituents is lacking. In this work, we quantified lithium alkoxide SEI species (derived from proton donor reduction) under a variety of electrolyte compositions, using ethanol as the standard proton donor along with five alternative linear and branched alcohol proton donors. With ethanol, we showed that Faradaic efficiency linearly increased from similar to 10 to similar to 20% as the lithium ethoxide layer thickened. When comparing different proton donors, we found that FE exhibited a "volcano plot" dependence with lithium alkoxide SEI layer thickness, such that FE increased with increasing SEI thickness up to similar to 4 mu m and decreased with increasing SEI thickness thereafter. We concluded the lithium alkoxide SEI layer limited proton donor and solvated Li+ transport, resulting in an optimal SEI thickness at which proton donor, solvated Li+, and N-2 transport were appropriately tuned to maximize NH3 selectivity.
引用
收藏
页码:4024 / 4032
页数:9
相关论文
共 50 条
  • [21] Solvent oligomerization pathways facilitated by electrolyte additives during solid-electrolyte interphase formation
    Gibson, Luke D.
    Pfaendtner, Jim
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (37) : 21494 - 21503
  • [22] Growth of the solid-electrolyte interphase: Electron diffusion versus solvent diffusion
    Koebbing, Lukas
    Latz, Arnulf
    Horstmann, Birger
    JOURNAL OF POWER SOURCES, 2023, 561
  • [23] Identifying the components of the solid-electrolyte interphase in Li-ion batteries
    Wang, Luning
    Menakath, Anjali
    Han, Fudong
    Wang, Yi
    Zavalij, Peter Y.
    Gaskell, Karen J.
    Borodino, Oleg
    Iuga, Dinu
    Brown, Steven P.
    Wang, Chunsheng
    Xu, Kang
    Eichhorn, Bryan W.
    NATURE CHEMISTRY, 2019, 11 (09) : 789 - 796
  • [24] Review on multi-scale models of solid-electrolyte interphase formation
    Horstmann, Birger
    Single, Fabian
    Latz, Arnulf
    CURRENT OPINION IN ELECTROCHEMISTRY, 2019, 13 : 61 - 69
  • [25] Solid-Electrolyte Interphase During Battery Cycling: Theory of Growth Regimes
    von Kolzenberg, Lars
    Latz, Arnulf
    Horstmann, Birger
    CHEMSUSCHEM, 2020, 13 (15) : 3901 - 3910
  • [26] Microgravimetric and Spectroscopic Analysis of Solid-Electrolyte Interphase Formation in Presence of Additives
    Ivanov, Svetlozar
    Mai, Sebastian
    Himmerlich, Marcel
    Dimitrova, Anna
    Krischok, Stefan
    Bund, Andreas
    CHEMPHYSCHEM, 2019, 20 (05) : 655 - 664
  • [27] Interplay between solid-electrolyte interphase and (in)active LixSi in silicon anode
    Zhang, Xiao
    Weng, Suting
    Yang, Gaojing
    Li, Yejing
    Li, Hong
    Su, Dong
    Gu, Lin
    Wang, Zhaoxiang
    Wang, Xuefeng
    Chen, Liquan
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (12):
  • [28] Modified solid-electrolyte interphase toward stable Li metal anode
    Jiang, Yunpeng
    Wang, Bo
    Liu, Peng
    Wang, Bin
    Zhou, Yu
    Wang, Dianlong
    Liu, Huakun
    Dou, Shixue
    NANO ENERGY, 2020, 77 (77)
  • [29] Lithium ion diffusion mechanism on the inorganic components of the solid-electrolyte interphase
    Zheng, Jianhui
    Ju, Zhijin
    Zhang, Baolin
    Nai, Jianwei
    Liu, Tiefeng
    Liu, Yujing
    Xie, Qifan
    Zhang, Wenkui
    Wang, Yao
    Tao, Xinyong
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (16) : 10251 - 10259
  • [30] Stabilization effect of solid-electrolyte interphase by electrolyte engineering for advanced Li-ion batteries
    Bintang, His Muhammad
    Seongsoo, Lee
    Shin, Sunghee
    Kim, Byung Gon
    Jung, Hun-Gi
    Whang, Dongmok
    Lim, Hee-Dae
    CHEMICAL ENGINEERING JOURNAL, 2021, 424