Different cofinalities of tree ideals

被引:0
|
作者
Shelah, Saharon [1 ,2 ]
Spinas, Otmar [3 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, Givat Ram, Edmond J Safra Campus, IL-91904 Jerusalem, Israel
[2] Rutgers State Univ, Dept Math, Hill Ctr Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[3] Christian Albrechts Univ Kiel, Math Seminar, Ludewig Meyn Str 4, D-24118 Kiel, Germany
基金
欧洲研究理事会;
关键词
Tree forcing; Tree ideal; Additivity; Cofinality;
D O I
10.1016/j.apal.2023.103290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a general framework of generalized tree forcings, GTF for short, that includes the classical tree forcings like Sacks, Silver, Laver or Miller forcing. Using this concept we study the cofinality of the ideal I(Q) associated with a GTF Q. We show that if for two GTF's Q0 and Q1 the consistency of add(I(Q0)) < add(I(Q1)) holds, then we can obtain the consistency of cof(I(Q1)) < cof(I(Q0)). We also show that cof(I(Q)) can consistently be any cardinal of cofinality larger than the continuum. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] External cofinalities and the antichain condition in partial orders
    Gorelic, I
    ANNALS OF PURE AND APPLIED LOGIC, 2006, 140 (1-3) : 104 - 109
  • [32] Different Neighbourhoods via Ideals on Graphs
    Guler, A. Caksu
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [33] Different Prime R-Ideals
    Juglal, S.
    Groenewald, N. J.
    Lee, K. S. E.
    ALGEBRA COLLOQUIUM, 2010, 17 : 887 - 904
  • [34] EFFECTIVE COFINALITIES AND ADMISSIBILITY IN E-RECURSION
    GRIFFOR, ER
    NORMANN, D
    FUNDAMENTA MATHEMATICAE, 1984, 123 (03) : 151 - 161
  • [35] On the cofinalities of Boolean algebras and the ideal of null sets
    Krzysztof Ciesielski
    Janusz Pawlikowski
    algebra universalis, 2002, 47 : 139 - 143
  • [36] On the cofinalities of Boolean algebras and the ideal of null sets
    Ciesielski, K
    Pawlikowski, J
    ALGEBRA UNIVERSALIS, 2002, 47 (02) : 139 - 143
  • [37] DIFFERENT PRIME IDEALS IN NEAR-RINGS
    GROENEWALD, NJ
    COMMUNICATIONS IN ALGEBRA, 1991, 19 (10) : 2667 - 2675
  • [38] Many different uniformity numbers of Yorioka ideals
    Lukas Daniel Klausner
    Diego Alejandro Mejía
    Archive for Mathematical Logic, 2022, 61 : 653 - 683
  • [39] Many different uniformity numbers of Yorioka ideals
    Klausner, Lukas Daniel
    Mejia, Diego Alejandro
    ARCHIVE FOR MATHEMATICAL LOGIC, 2022, 61 (5-6) : 653 - 683
  • [40] CLOSED IDEALS IN C(X) WITH DIFFERENT REPRESENTATIONS
    Azarpanah, F.
    Ghirati, M.
    Taherifar, A.
    HOUSTON JOURNAL OF MATHEMATICS, 2018, 44 (01): : 363 - 383