Deep learning model-transformer based wind power forecasting approach

被引:5
|
作者
Huang, Sheng [1 ]
Yan, Chang [1 ]
Qu, Yinpeng [1 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
wind power forecasting; transformer; deep learning; data driven; attention mechanism; PREDICTION; SPEED; LSTM;
D O I
10.3389/fenrg.2022.1055683
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The uncertainty and fluctuation are the major challenges casted by the large penetration of wind power (WP). As one of the most important solutions for tackling these issues, accurate forecasting is able to enhance the wind energy consumption and improve the penetration rate of WP. In this paper, we propose a deep learning model-transformer based wind power forecasting (WPF) model. The transformer is a neural network architecture based on the attention mechanism, which is clearly different from other deep learning models such as CNN or RNN. The basic unit of the transformer network consists of residual structure, self-attention mechanism and feedforward network. The overall multilayer encoder to decoder structure enables the network to complete modeling of sequential data. By comparing the forecasting results with other four deep learning models, such as LSTM, the accuracy and efficiency of transformer have been validated. Furthermore, the migration learning experiments show that transformer can also provide good migration performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach
    Li, Yang
    Wang, Ruinong
    Li, Yuanzheng
    Zhang, Meng
    Long, Chao
    APPLIED ENERGY, 2023, 329
  • [42] Advanced Deep Learning Approach for Probabilistic Wind Speed Forecasting
    Afrasiabi, Mousa
    Mohammadi, Mohammad
    Rastegar, Mohammad
    Afrasiabi, Shahabodin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (01) : 720 - 727
  • [43] Wind Power Forecasting Based on Prophet Model
    Zheng, Yahan
    Liu, Yize
    Jiang, Zhaojun
    Tang, Qingwei
    Xiang, Yue
    2022 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (I&CPS ASIA 2022), 2022, : 1544 - 1548
  • [44] Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach
    Li, Gangqiang
    Xie, Sen
    Wang, Bozhong
    Xin, Jiantao
    Li, Yunfeng
    Du, Shengnan
    IEEE ACCESS, 2020, 8 (08) : 175871 - 175880
  • [45] A Statistical Upscaling Approach of Region Wind Power Forecasting Based on Combination Model
    Ding, Tingting
    Li, Peng
    Huang, Guilin
    Yu, Yixiao
    Si, Zhiyuan
    Yan, Fangqing
    Liu, Xiaoyi
    Li, Menglin
    2020 IEEE STUDENT CONFERENCE ON ELECTRIC MACHINES AND SYSTEMS (SCEMS 2020), 2020, : 596 - 601
  • [46] An intelligent deep learning based prediction model for wind power generation
    Almutairi, Abdulaziz
    Alrumayh, Omar
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101
  • [47] A hybrid deep learning model with an optimal strategy based on improved VMD and transformer for short-term photovoltaic power forecasting
    Wang, Xinyu
    Ma, Wenping
    ENERGY, 2024, 295
  • [48] Combined Approach for Short-Term Wind Power Forecasting Based on Wave Division and Seq2Seq Model Using Deep Learning
    Ye, Lin
    Dai, Binhua
    Pei, Ming
    Lu, Peng
    Zhao, Jinlong
    Chen, Mei
    Wang, Bo
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2022, 58 (02) : 2586 - 2596
  • [49] Wind Power Forecasting Based on WaveNet and Multitask Learning
    Wang, Hao
    Peng, Chen
    Liao, Bolin
    Cao, Xinwei
    Li, Shuai
    SUSTAINABILITY, 2023, 15 (14)
  • [50] Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model
    Liu, Yongqi
    Qin, Hui
    Zhang, Zhendong
    Pei, Shaoqian
    Jiang, Zhiqiang
    Feng, Zhongkai
    Zhou, Jianzhong
    APPLIED ENERGY, 2020, 260