Automatic generation of interpretable hyperelastic material models by symbolic regression

被引:15
|
作者
Abdusalamov, Rasul [1 ]
Hillgaertner, Markus [1 ]
Itskov, Mikhail [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Continuum Mech, Aachen, North Rhine Wes, Germany
关键词
hyperelasticity; machine learning; multi-axial constitutive modeling; symbolic regression; COMPUTATIONAL HOMOGENIZATION; CONSTITUTIVE MODEL; RUBBER ELASTICITY; NETWORK; BEHAVIOR;
D O I
10.1002/nme.7203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we present a new procedure to automatically generate interpretable hyperelastic material models. This approach is based on symbolic regression which represents an evolutionary algorithm searching for a mathematical model in the form of an algebraic expression. This results in a relatively simple model with good agreement to experimental data. By expressing the strain energy function in terms of its invariants or other parameters, it is possible to interpret the resulting algebraic formulation in a physical context. In addition, a direct implementation of the obtained algebraic equation for example into a finite element procedure is possible. For the validation of the proposed approach, benchmark tests on the basis of the generalized Mooney-Rivlin model are presented. In all these tests, the chosen ansatz can find the predefined models. Additionally, this method is applied to the multi-axial loading data set of vulcanized rubber. Finally, a data set for a temperature-dependent thermoplastic polyester elastomer is evaluated. In latter cases, good agreement with the experimental data is obtained.
引用
收藏
页码:2093 / 2104
页数:12
相关论文
共 50 条
  • [21] Distilling Financial Models by Symbolic Regression
    La Malfa, Gabriele
    La Malfa, Emanuele
    Belavkin, Roman
    Pardalos, Panos M.
    Nicosia, Giuseppe
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT II, 2022, 13164 : 502 - 517
  • [22] Symbolic regression of generative network models
    Menezes, Telmo
    Roth, Camille
    SCIENTIFIC REPORTS, 2014, 4
  • [23] Deep and interpretable regression models for ordinal outcomes
    Kook, Lucas
    Herzog, Lisa
    Hothorn, Torsten
    Durr, Oliver
    Sick, Beate
    PATTERN RECOGNITION, 2022, 122
  • [24] Symbolic regression of generative network models
    Telmo Menezes
    Camille Roth
    Scientific Reports, 4
  • [25] Material hardness descriptor derived by symbolic regression
    Tantardini, Christian
    Zakaryan, Hayk A.
    Han, Zhong-Kang
    Altalhi, Tariq
    Levchenko, Sergey V.
    Kvashnin, Alexander G.
    Yakobson, Boris I.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 82
  • [26] Interpretable Surrogate Learning for Electronic Material Generation
    Wang, Zhilong
    Liu, Sixian
    Tao, Kehao
    Chen, An
    Duan, Hongxiao
    Han, Yanqiang
    You, Fengqi
    Liu, Gang
    Li, Jinjin
    ACS NANO, 2024, 18 (49) : 33587 - 33601
  • [27] Feature and Language Selection in Temporal Symbolic Regression for Interpretable Air Quality Modelling
    Lucena-Sanchez, Estrella
    Sciavicco, Guido
    Stan, Ionel Eduard
    ALGORITHMS, 2021, 14 (03)
  • [28] Implementation of isotropic hyperelastic material models: a ⟫template⟪ approach
    Eisentraeger, S.
    Maurer, L.
    Juhre, D.
    Altenbach, H.
    Eisentraeger, J.
    ACTA MECHANICA, 2025, 236 (03) : 1899 - 1934
  • [29] Hyperelastic Material Models for Finite Element Analysis of Rubber
    Yeoh, O. H.
    Journal of Natural Rubber Research, 12 (03):
  • [30] Weakly symmetric stress equilibration for hyperelastic material models
    Bertrand F.
    Moldenhauer M.
    Starke G.
    GAMM Mitteilungen, 2020, 43 (02)