Automatic generation of interpretable hyperelastic material models by symbolic regression

被引:15
|
作者
Abdusalamov, Rasul [1 ]
Hillgaertner, Markus [1 ]
Itskov, Mikhail [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Continuum Mech, Aachen, North Rhine Wes, Germany
关键词
hyperelasticity; machine learning; multi-axial constitutive modeling; symbolic regression; COMPUTATIONAL HOMOGENIZATION; CONSTITUTIVE MODEL; RUBBER ELASTICITY; NETWORK; BEHAVIOR;
D O I
10.1002/nme.7203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we present a new procedure to automatically generate interpretable hyperelastic material models. This approach is based on symbolic regression which represents an evolutionary algorithm searching for a mathematical model in the form of an algebraic expression. This results in a relatively simple model with good agreement to experimental data. By expressing the strain energy function in terms of its invariants or other parameters, it is possible to interpret the resulting algebraic formulation in a physical context. In addition, a direct implementation of the obtained algebraic equation for example into a finite element procedure is possible. For the validation of the proposed approach, benchmark tests on the basis of the generalized Mooney-Rivlin model are presented. In all these tests, the chosen ansatz can find the predefined models. Additionally, this method is applied to the multi-axial loading data set of vulcanized rubber. Finally, a data set for a temperature-dependent thermoplastic polyester elastomer is evaluated. In latter cases, good agreement with the experimental data is obtained.
引用
收藏
页码:2093 / 2104
页数:12
相关论文
共 50 条
  • [1] Inferring interpretable models of fragmentation functions using symbolic regression
    Makke, Nour
    Chawla, Sanjay
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2025, 6 (02):
  • [2] A flexible symbolic regression method for constructing interpretable clinical prediction models
    La Cava, William G. G.
    Lee, Paul C. C.
    Ajmal, Imran
    Ding, Xiruo
    Solanki, Priyanka
    Cohen, Jordana B. B.
    Moore, Jason H. H.
    Herman, Daniel S. S.
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [3] Automated discovery of interpretable hyperelastic material models for human brain tissue with EUCLID
    Flaschel, Moritz
    Yu, Huitian
    Reiter, Nina
    Hinrichsen, Jan
    Budday, Silvia
    Steinmann, Paul
    Kumar, Siddhant
    De Lorenzis, Laura
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2023, 180
  • [4] A flexible symbolic regression method for constructing interpretable clinical prediction models
    William G. La Cava
    Paul C. Lee
    Imran Ajmal
    Xiruo Ding
    Priyanka Solanki
    Jordana B. Cohen
    Jason H. Moore
    Daniel S. Herman
    npj Digital Medicine, 6
  • [5] Development of interpretable, data-driven plasticity models with symbolic regression
    Bomarito, G. F.
    Townsend, T. S.
    Stewart, K. M.
    Esham, K., V
    Emery, J. M.
    Hochhalter, J. D.
    COMPUTERS & STRUCTURES, 2021, 252
  • [6] Symbolic Regression for Interpretable Scientific Discovery
    Makke, Nour
    Sadeghi, Mohammad Amin
    Chawla, Sanjay
    BIG-DATA-ANALYTICS IN ASTRONOMY, SCIENCE, AND ENGINEERING, BDA 2021, 2022, 13167 : 26 - 40
  • [7] Discovering interpretable physical models using symbolic regression and discrete exterior calculus
    Manti, Simone
    Lucantonio, Alessandro
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (01):
  • [8] Interpretable scientific discovery with symbolic regression: a review
    Makke, Nour
    Chawla, Sanjay
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (01)
  • [9] Interpretable scientific discovery with symbolic regression: a review
    Nour Makke
    Sanjay Chawla
    Artificial Intelligence Review, 2024, 57
  • [10] Generalizability Improvement of Interpretable Symbolic Regression Models for Quantitative Structure-Activity Relationships
    Shirasawa, Raku
    Takaki, Katsushi
    Miyao, Tomoyuki
    ACS OMEGA, 2024, 9 (08): : 9463 - 9474