Conformal Prediction Credibility Intervals

被引:0
|
作者
Hong, Liang [1 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, 800 West Campbell Rd, Richardson, TX 75083 USA
关键词
D O I
10.1080/10920277.2022.2123364
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In the predictive modeling context, the credibility estimator is a point predictor; it is easy to calculate and avoids the model misspecification risk asymptotically, but it provides no quantification of inferential uncertainty. A Bayesian prediction interval quantifies uncertainty of prediction, but it often requires expensive computation and is subject to model misspecification risk even asymptotically. Is there a way to get the best of both worlds? Based on a powerful machine learning strategy called conformal prediction, this article proposes a method that converts the credibility estimator into a conformal prediction credibility interval. This conformal prediction credibility interval contains the credibility estimator, has computational simplicity, and guarantees finite-sample validity at a pre-assigned coverage level.
引用
收藏
页码:675 / 688
页数:14
相关论文
共 50 条
  • [31] Fiducial prediction intervals
    Wang, C. M.
    Hannig, Jan
    Iyer, Hari K.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) : 1980 - 1990
  • [32] Statistical prediction intervals
    Luko, Stephen N.
    Neubauer, Dean V.
    Standardization News, 2014, 42 (02) : 12 - 14
  • [33] Synergy Conformal Prediction
    Gauraha, Niharika
    Spjuth, Ola
    CONFORMAL AND PROBABILISTIC PREDICTION AND APPLICATIONS, VOL 152, 2021, 152 : 91 - 110
  • [34] A tutorial on conformal prediction
    Shafer, Glenn
    Vovk, Vladimir
    JOURNAL OF MACHINE LEARNING RESEARCH, 2008, 9 : 371 - 421
  • [35] Transductive Conformal Prediction
    Vovk, Vladimir
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2015, 24 (06)
  • [36] Conformal Prediction with Orange
    Hocevar, Tomaz
    Zupan, Blaz
    Stalring, Jonna
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 98 (07): : 1 - 22
  • [37] SIMULTANEOUS PREDICTION INTERVALS
    CHEW, V
    TECHNOMETRICS, 1968, 10 (02) : 323 - &
  • [38] Distributional conformal prediction
    Chernozhukov, Victor
    Wuethrich, Kaspar
    Zhu, Yinchu
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (48)
  • [39] Confidence intervals, prediction intervals and tolerance intervals for negative binomial distributions
    Bao-Anh Dang
    K. Krishnamoorthy
    Statistical Papers, 2022, 63 : 795 - 820
  • [40] Confidence intervals, prediction intervals and tolerance intervals for negative binomial distributions
    Dang, Bao-Anh
    Krishnamoorthy, K.
    STATISTICAL PAPERS, 2022, 63 (03) : 795 - 820