Molecular mechanism of the effect of Gegen Qinlian decoction on COVID-19 comorbid with diabetes mellitus based on network pharmacology and molecular docking: A review

被引:1
|
作者
Li, Lin-zi [1 ]
Zhou, Cong [2 ]
Wang, Pei [1 ]
Ke, Qing-hua [1 ]
Zhang, Jie [1 ]
Lei, Shan-shan [3 ]
Li, Zhi-qiang [1 ,4 ]
机构
[1] Jingmen Cent Hosp, Jingmen, Peoples R China
[2] AnKang Univ, Sch Med, Ankang, Peoples R China
[3] Zhejiang Acad Tradit Chinese Med, Dept Med, Hangzhou, Peoples R China
[4] Jingmen Cent Hosp, Jingmen 448000, Hubei, Peoples R China
关键词
COVID-19; diabetes mellitus; Gegen Qinlian decoction; molecular docking; network pharmacology; pharmacological mechanism;
D O I
10.1097/MD.0000000000034683
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
To explore the potential mechanism of Gegen Qinlian decoction (GGQL) in the treatment of COVID-19 comorbid with diabetes mellitus (DM) through network pharmacology and molecular docking, and to provide theoretical guidance for clinical transformation research. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform was used to screen the active compounds and targets of GGQL, the targets of COVID-19 comorbid with DM were searched based on Genecards database. Protein-protein interaction network was constructed using String data platform for the intersection of compounds and disease targets, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the intersection targets was performed using DAVID database. Cytoscape software was used to construct the "compound target-pathway (C-T-P)" of GGQL in the treatment of COVID-19 comorbid with DM, the molecular docking platform was used to complete the simulated docking of key compounds and targets. We obtained 141 compounds from GGQL, revealed 127 bioactive compounds and 283 potential targets of GGQL. Quercetin, kaempferol and formononetin in GGQL play a role by modulating the targets (including AR, GSK3B, DPP4, F2, and NOS3). GGQL might affect diverse signaling pathways related to the pathogenesis of coronavirus disease - COVID-19, AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, human cytomegalovirus infection and Th17 cell differentiation. Meanwhile, molecular docking showed that the selected GGQL core active components had strong binding activity with the key targets. This study revealed that GGQL play a role in the treatment of COVID-19 comorbid with DM through multi-component, multi-target and multi-pathway mode of action, which provided good theoretical basis for further verification research.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] The Molecular Mechanism Underlying the Therapeutic Effect of Dihydromyricetin on Type 2 Diabetes Mellitus Based on Network Pharmacology, Molecular Docking, and Transcriptomics
    Wen, Xinnian
    Lv, Chenghao
    Zhou, Runze
    Wang, Yixue
    Zhou, Xixin
    Qin, Si
    FOODS, 2024, 13 (02)
  • [22] Mechanism of Hanshi Zufei formula in treatment of COVID-19 based on network pharmacology and molecular docking technology
    刘建滔
    China Medical Abstracts (Internal Medicine), 2021, 38 (02) : 75 - 76
  • [23] Investigating the Mechanism of Banxia Xiexin Decoction in Treating Gastritis and Diabetes Mellitus through Network Pharmacology and Molecular Docking Analysis
    Du, Yikuan
    Chi, Xianhong
    Chen, Qianwen
    Xiao, Yue
    Ma, Zhendong
    Wang, Zhenjie
    Guo, Zhuoming
    Chen, Peng
    Chen, Zilin
    Zhang, Mengting
    Guo, Jinyan
    Zhou, Yuqi
    Yang, Chun
    CURRENT DRUG THERAPY, 2024, 19 (07) : 878 - 897
  • [24] Theoretical Study of the Molecular Mechanism of Maxingyigan Decoction Against COVID-19: Network Pharmacology-based Strategy
    Wang, Mingzhu
    Fu, Deyu
    Yao, Lei
    Li, Jianhua
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2021, 24 (02) : 294 - 305
  • [25] Predicting the Molecular Mechanism of Shenling Baizhu San in Treating Convalescent Patients With COVID-19 Based on Network Pharmacology and Molecular Docking
    Zhang, Ying
    Lu, Li
    Liu, YiWen
    Yang, AiXia
    Yang, Yanfang
    NATURAL PRODUCT COMMUNICATIONS, 2021, 16 (10)
  • [26] Discussion on the molecular mechanism of Duhuo Jisheng decoction in treating osteoarthritis based on network pharmacology and molecular docking
    Yang, Liu
    Zheng, Senwang
    Hou, Ajiao
    Wang, Song
    Zhang, Jiaxu
    Yu, Huan
    Wang, Xuejiao
    Lan, Wei
    MEDICINE, 2022, 101 (42) : E31009
  • [27] Network Pharmacology and Molecular Docking to Explore the Mechanism of Kangxian Decoction for Epilepsy
    Wang, Weitao
    Zhang, Yongquan
    Yang, Yibing
    Gu, Lian
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [28] Exploration of Fuzheng Yugan Mixture on COVID-19 based on network pharmacology and molecular docking
    Jiang, Xinyu
    Zhou, Jie
    Yu, Zhongming
    Gu, Xueya
    Lu, Ying
    Ruan, Yanmin
    Wang, Tianyue
    MEDICINE, 2023, 102 (03) : E32693
  • [29] Mechanism of Simiao Decoction in the treatment of atherosclerosis based on network pharmacology prediction and molecular docking
    Li, Qian
    Chai, Yihui
    Li, Wen
    Guan, Liancheng
    Fan, Yizi
    Chen, Yunzhi
    MEDICINE, 2023, 102 (36) : E35109
  • [30] Exploring the mechanism of Suanzaoren decoction in treatment of insomnia based on network pharmacology and molecular docking
    Wang, Shuxiao
    Zhao, Yan
    Hu, Xingang
    FRONTIERS IN PHARMACOLOGY, 2023, 14