DREAM: Adaptive Reinforcement Learning based on Attention Mechanism for Temporal Knowledge Graph Reasoning

被引:3
|
作者
Zheng, Shangfei [1 ]
Yin, Hongzhi [2 ]
Chen, Tong [2 ]
Quoc Viet Hung Nguyen [3 ]
Chen, Wei [1 ]
Zhao, Lei [1 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou, Peoples R China
[2] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld, Australia
[3] Griffith Univ, Sch Informat & Commun Technol, Gold Coast, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Temporal Knowledge Graph; Multi-hop knowledge reasoning; Link prediction;
D O I
10.1145/3539618.3591671
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Temporal knowledge graphs (TKGs) model the temporal evolution of events and have recently attracted increasing attention. Since TKGs are intrinsically incomplete, it is necessary to reason out missing elements. Although existing TKG reasoning methods have the ability to predict missing future events, they fail to generate explicit reasoning paths and lack explainability. As reinforcement learning (RL) for multi-hop reasoning on traditional knowledge graphs starts showing superior explainability and performance in recent advances, it has opened up opportunities for exploring RL techniques on TKG reasoning. However, the performance of RL-based TKG reasoning methods is limited due to: (1) lack of ability to capture temporal evolution and semantic dependence jointly; (2) excessive reliance on manually designed rewards. To overcome these challenges, we propose an adaptive reinforcement learning model based on attention mechanism (DREAM) to predict missing elements in the future. Specifically, the model contains two components: (1) a multi-faceted attention representation learning method that captures semantic dependence and temporal evolution jointly; (2) an adaptive RL framework that conducts multi-hop reasoning by adaptively learning the reward functions. Experimental results demonstrate DREAM outperforms state-of-the-art models on public datasets.
引用
收藏
页码:1578 / 1588
页数:11
相关论文
共 50 条
  • [31] Reinforcement Learning-based Knowledge Graph Reasoning for Explainable Fact-checking
    Nikopensius, Gustav
    Mayank, Mohit
    Phukan, Orchid Chetia
    Sharma, Rajesh
    [J]. PROCEEDINGS OF THE 2023 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2023, 2023, : 164 - 170
  • [32] Intricate Spatiotemporal Dependency Learning for Temporal Knowledge Graph Reasoning
    Li, Xuefei
    Zhou, Huiwei
    Yao, Weihong
    Li, Wenchu
    Liu, Baojie
    Lin, Yingyu
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (06)
  • [33] Complex Evolutional Pattern Learning for Temporal Knowledge Graph Reasoning
    Li, Zixuan
    Guan, Saiping
    Jin, Xiaolong
    Peng, Weihua
    Lyu, Yajuan
    Zhu, Yong
    Bai, Long
    Li, Wei
    Guo, Jiafeng
    Cheng, Xueqi
    [J]. PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022): (SHORT PAPERS), VOL 2, 2022, : 290 - 296
  • [34] Cascaded Attention: Adaptive and Gated Graph Attention Network for Multiagent Reinforcement Learning
    Qi, Shuhan
    Huang, Xinhao
    Peng, Peixi
    Huang, Xuzhong
    Zhang, Jiajia
    Wang, Xuan
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3769 - 3779
  • [35] Temporal Knowledge Graph Reasoning with Graph Reconstruction
    Xu, Zhihong
    Zhang, Tianrun
    Wang, Liqin
    Dong, Yongfeng
    [J]. Computer Engineering and Applications, 2024, 60 (09) : 181 - 187
  • [36] Adaptive Path-Memory Network for Temporal Knowledge Graph Reasoning
    Dong, Hao
    Ning, Zhiyuan
    Wang, Pengyang
    Qiao, Ziyue
    Wang, Pengfei
    Zhou, Yuanchun
    Fu, Yanjie
    [J]. PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 2086 - 2094
  • [37] Transformer-based Reasoning for Learning Evolutionary Chain of Events on Temporal Knowledge Graph
    Fang, Zhiyu
    Lei, Shuai-Long
    Zhu, Xiaobin
    Yang, Chun
    Zhang, Shi-Xue
    Yin, Xu-Cheng
    Qin, Jingyan
    [J]. PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 70 - 79
  • [38] Learning Dynamic and Static Representations for Extrapolation-Based Temporal Knowledge Graph Reasoning
    Li, Pengfei
    Zhou, Guangyou
    Xie, Zhiwen
    Xie, Penghui
    Huang, Jimmy Xiangji
    [J]. IEEE/ACM Transactions on Audio Speech and Language Processing, 2024, 32 : 4741 - 4754
  • [39] Survey of Knowledge Graph Based on Reinforcement Learning
    Ma, Ang
    Yu, Yanhua
    Yang, Shengli
    Shi, Chuan
    Li, Jie
    Cai, Xiuxiu
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (08): : 1694 - 1722
  • [40] Hierarchical Policy Network with Multi-agent for Knowledge Graph Reasoning Based on Reinforcement Learning
    Zheng, Mingming
    Zhou, Yanquan
    Cui, Qingyao
    [J]. KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2021, 12815 : 445 - 457