The Willmore flow with prescribed isoperimetric ratio

被引:2
|
作者
Rupp, Fabian [1 ,2 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Willmore flow; Helfrich energy; isoperimetric ratio; Lojasiewicz-Simon inequality; non-local geometric evolution equation; GRADIENT FLOW; FINITE-TIME; SINGULARITIES; THEOREM; ENERGY;
D O I
10.1080/03605302.2024.2302377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a non-local L-2-gradient flow for the Willmore energy of immersed surfaces which preserves the isoperimetric ratio. For spherical initial data with energy below an explicit threshold, we show long-time existence and convergence to a Helfrich immersion. This is in sharp contrast to the locally constrained flow, where finite time singularities occur.
引用
收藏
页码:148 / 184
页数:37
相关论文
共 50 条
  • [41] ISOPERIMETRIC PROPERTIES OF THE MEAN CURVATURE FLOW
    Hershkovits, Or
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (06) : 4367 - 4383
  • [42] FURTHER DEVELOPMENTS OF A VARIABLE FUEL FLOW AUTOMATIC MIXING VALVE FOR PRESCRIBED INJECTION RATIO
    Cerri, Giovanni
    Chennaoui, Laila
    Giovannelli, Ambra
    Miglioli, Mauro
    PROCEEDINGS OF THE ASME TURBO EXPO 2009, VOL 1, 2009, : 331 - 340
  • [43] A nested variational time discretization for parametric Willmore flow
    Balzani, Nadine
    Rumpf, Martin
    INTERFACES AND FREE BOUNDARIES, 2012, 14 (04) : 431 - 454
  • [44] Adiabatic theory for the area-constrained Willmore flow
    Zhang, Jingxuan
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (04)
  • [45] Automatic mixing valve for prescribed injection ratio versus variable fuel flow rate
    Cerri, Giovanni
    Chennaoui, Laila
    Miglioli, Mauro
    Botta, Fablo
    PROCEEDINGS OF THE ASME TURBO EXPO 2007, VOL 1, 2007, : 377 - 386
  • [46] An unconditionally stable threshold dynamics method for the Willmore flow
    Shengqing Hu
    Zijie Lin
    Dong Wang
    Xiao-Ping Wang
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 1519 - 1546
  • [47] THE SURFACE DIFFUSION AND THE WILLMORE FLOW FOR UNIFORMLY REGULAR HYPERSURFACES
    LeCrone, Jeremy
    Shao, Yuanzhen
    Simonett, Gieri
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (12): : 3503 - 3524
  • [48] Phase-field approximations of the Willmore functional and flow
    Bretin, Elie
    Masnou, Simon
    Oudet, Edouard
    NUMERISCHE MATHEMATIK, 2015, 131 (01) : 115 - 171
  • [49] Phase-field approximations of the Willmore functional and flow
    Elie Bretin
    Simon Masnou
    Édouard Oudet
    Numerische Mathematik, 2015, 131 : 115 - 171
  • [50] Computational p-Willmore Flow with Conformal Penalty
    Gruber, Anthony
    Aulisa, Eugenio
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (05):