Base sizes of primitive groups of diagonal type

被引:0
|
作者
Huang, Hong Yi [1 ]
机构
[1] Univ Bristol, Bristol BS8 1UG, England
关键词
20B15; 20B05; 20P05; FINITE SIMPLE-GROUPS; FIXED-POINT RATIOS; CONJUGACY CLASSES; PROBABILISTIC GENERATION; PERMUTATION-GROUPS; NUMBER; INVARIANTS; BOUNDS;
D O I
10.1017/fms.2023.121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a permutation group on a finite set $\Omega $. The base size of G is the minimal size of a subset of $\Omega $ with trivial pointwise stabiliser in G. In this paper, we extend earlier work of Fawcett by determining the precise base size of every finite primitive permutation group of diagonal type. In particular, this is the first family of primitive groups arising in the O'Nan-Scott theorem for which the exact base size has been computed in all cases. Our methods also allow us to determine all the primitive groups of diagonal type with a unique regular suborbit.
引用
收藏
页数:43
相关论文
共 50 条
  • [21] The minimal base size of primitive solvable permutation groups
    Seress, A
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 53 : 243 - 255
  • [22] On class sizes and primitive character degrees ofp-solvable groups
    Li, Wanting
    Yang, Yong
    [J]. COMMUNICATIONS IN ALGEBRA, 2021, 49 (02) : 687 - 689
  • [23] PRIMITIVE STRUCTURES AND DIAGONAL CONDITIONS
    WICKE, HH
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A587 - A587
  • [24] Finite quasi-quantum groups of diagonal type
    Huang, Hua-Lin
    Liu, Gongxiang
    Yang, Yuping
    Ye, Yu
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 759 : 201 - 243
  • [25] Finite quasi-quantum groups of diagonal type
    Huang, Hua-Lin
    Liu, Gongxiang
    Yang, Yuping
    Ye, Yu
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 2020 (759): : 201 - 243
  • [26] Fibering flat manifolds of diagonal type and their fundamental groups
    Chung, Ho Yiu
    Petrosyant, Nansen
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (07) : 1411 - 1445
  • [27] Base sizes for S-actions of finite classical groups
    Timothy C. Burness
    Robert M. Guralnick
    Jan Saxl
    [J]. Israel Journal of Mathematics, 2014, 199 : 711 - 756
  • [28] Base sizes for S-actions of finite classical groups
    Burness, Timothy C.
    Guralnick, Robert M.
    Saxl, Jan
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (02) : 711 - 756
  • [29] Base sizes and regular orbits for coprime affine permutation groups
    Gluck, D
    Magaard, K
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 : 603 - 618
  • [30] Base sizes of imprimitive linear groups and orbits of general linear groups on spanning tuples
    Joanna B. Fawcett
    Cheryl E. Praeger
    [J]. Archiv der Mathematik, 2016, 106 : 305 - 314