QSAR modeling using the Gaussian process applied for a series of flavonoids as potential antioxidants

被引:0
|
作者
Boudergua, Samia [1 ,2 ]
Belaidi, Salah [3 ]
Almogren, Muneerah Mogren [4 ]
Bounif, Aouda [1 ]
Bakhouch, Mohamed [5 ]
Chtita, Samir [6 ]
机构
[1] Univ Khemis Miliana, Fac Sci & Technol, Ain Defla 44225, Algeria
[2] Univ Biskra, Fac Sci, LMCE Lab, Grp Computat & Med Chem, Biskra 07000, Algeria
[3] Biskra Univ, Dept Chem, LMC E Lab, Grp Computat & Med Chem,Fac Exact Sci, Biskra 07000, Algeria
[4] King Saud Univ, Fac Sci, Dept Chem, Riyadh 11451, Saudi Arabia
[5] Chouaib Doukkali Univ, Fac Sci, Dept Chem, Lab Bioorgan Chem, POB 24, M-24000 El Jadida, Morocco
[6] Hassan II Univ Casablanca, Fac Sci Ben MSik, Dept Chem, Casablanca, Morocco
关键词
Flavonoids; Antioxidant; QSAR; Gaussian process; PCA; HCA; MOLECULAR-STRUCTURE; DRUG-LIKENESS; ASSOCIATION; DERIVATIVES; INHIBITORS; DOCKING;
D O I
10.1016/j.jksus.2023.102898
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Flavonoids have been the subject of several studies for many years, particularly due to their high antioxidant activity. However, understanding the structure-activity relationships (SAR) of flavonoids is crucial for optimizing their properties and designing new derivatives with enhanced activities. In this study, we employed Quantitative Structure-Activity Relationship (QSAR) methods to analyze a group of 31 flavonoids with known biological activity. The Gaussian program was used to calculate the molecular descriptors. Using statistical modeling techniques, such as multiple linear regression, we developed QSAR models to correlate the molecular descriptors with the activity values. The models were rigorously validated using appropriate procedures to ensure their reliability and predictive power with a correlation coefficient R2pred = 0.86, and an absolute average relative error (AARE pred) of 0.06 for the test set.(c) 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Bayesian Learning using Gaussian Process for time series prediction
    Brahim-Belhouari, S
    Vesin, JM
    2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 433 - 436
  • [22] MULTIPLE LINEAR REGRESSION AND PARTIAL LEAST SQUARES QSAR MODELING APPLIED TO A SERIES OF ANTIPSYCHOTIC SERTINDOLE DERIVATIVES
    Crisan, Luminita
    Bora, Alina
    Kurunczi, Ludovic
    Vlaia, Vicentiu
    Simon, Zeno
    REVUE ROUMAINE DE CHIMIE, 2010, 55 (11-12) : 941 - +
  • [23] Learning non-Gaussian Time Series using the Box-Cox Gaussian Process
    Rios, Gonzalo
    Tobar, Felipe
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [24] Bayesian inference using Gaussian process surrogates in cancer modeling
    Rocha, Heber L.
    Silva, Joao Vitor de O.
    Silva, Renato S.
    Lima, Ernesto A. B. F.
    Almeida, Regina C.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 399
  • [25] Gaussian Process Modeling of Heterogeneity and Discontinuities Using Voronoi Tessellations
    Pope, Christopher A.
    Gosling, John Paul
    Barber, Stuart
    Johnson, Jill S.
    Yamaguchi, Takanobu
    Feingold, Graham
    Blackwell, Paul G.
    TECHNOMETRICS, 2021, 63 (01) : 53 - 63
  • [26] Time series forecasting using multiple Gaussian process prior model
    Hachino, Tomohiro
    Kadirkamanathan, Visakan
    2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 604 - 609
  • [27] Optimal Operation of an Energy Management System Using Model Predictive Control and Gaussian Process Time-Series Modeling
    Lee, Jaehwa
    Zhang, Pengfei
    Gan, Leong Kit
    Howey, David A.
    Osborne, Michael A.
    Tosi, Alessandra
    Duncan, Stephen
    IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2018, 6 (04) : 1783 - 1795
  • [28] QSAR modeling of antiradical and antioxidant activities of flavonoids using electrotopological state (E-State) atom parameters
    Ray, Supratim
    Sengupta, Chandana
    Roy, Kunal
    CENTRAL EUROPEAN JOURNAL OF CHEMISTRY, 2007, 5 (04): : 1094 - 1113
  • [29] APPLIED STATE-SPACE MODELING OF NON-GAUSSIAN TIME-SERIES USING INTEGRATION-BASED KALMAN FILTERING
    FRUHWIRTHSCHNATTER, S
    STATISTICS AND COMPUTING, 1994, 4 (04) : 259 - 269
  • [30] Modeling forecast errors for microgrid operation using Gaussian process regression
    Yeuntae Yoo
    Seungmin Jung
    Scientific Reports, 14