Impact of Fin Width on Low-Frequency Noise in AlGaN/GaN FinFETs: Evidence for Bulk Conduction

被引:6
|
作者
Im, Ki-Sik [1 ]
机构
[1] Korea Polytech, Dept Green Semicond Syst, Daegu Campus, Daegu 41765, South Korea
基金
新加坡国家研究基金会;
关键词
Wide band gap semiconductors; Aluminum gallium nitride; FinFETs; MODFETs; Logic gates; HEMTs; Fluctuations; AlGaN; GaN FinFET; fin width; low-frequency noise; bulk conduction; volume accumulation; GAN; PERFORMANCE; MOBILITY;
D O I
10.1109/ACCESS.2023.3240409
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
AlGaN/GaN Fin-shaped field-effect transistors (FinFETs) with nano-sized Fin width (W-Fin) from 20 nm to 230 nm are characterized using low-frequency noise (LFN) measurement. All devices exhibit 1/f noise shape with Hooge mobility fluctuations (HMF) at subthreshold region and carrier number fluctuations (CNF) at accumulation region. However, the lowest normalized drain current noise spectral densities (S-Id /I-d(2)) are obtained in the narrow Fin device (W-Fin = 20 nm). This is due to significant contribution of bulk channel without the 2-dimensional electron gas density (2DEG) channel and two sidewall metal-oxide-semiconductor (MOS) channels. It is also noticed that the lowest trap density (Nt) and a large separation in CNF noise model clearly indicate to the volume accumulation effect caused by bulk conduction in narrow device. The Hooge constants (aH) extracted by HMF noise model for the narrow device are one-order higher than those of the wide Fin device, which tells that the narrow device suffers from the strong phonon scattering in the bulk channel. From the product of (S-Id x frequency (f )) versus Id curves, the volume accumulation phenomenon is also clearly observed in narrow Fin device.
引用
收藏
页码:10384 / 10389
页数:6
相关论文
共 50 条
  • [31] Temperature-Dependent Electrical Characteristics and Low-Frequency Noise Analysis of AlGaN/GaN HEMTs
    Chen, Qiang
    Chen, Y. Q.
    Liu, Chang
    He, Zhiyuan
    Chen, Yuan
    Geng, K. W.
    He, Y. J.
    Chen, W. Y.
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2024, 12 : 698 - 702
  • [32] Low-frequency noise in SiO2/AlGaN/GaN heterostructures on SiC and sapphire substrates
    Pala, N
    Gaska, R
    Shur, M
    Yang, JW
    Khan, MA
    MRS INTERNET JOURNAL OF NITRIDE SEMICONDUCTOR RESEARCH, 2000, 5
  • [33] EXCESS LOW-FREQUENCY NOISE IN HOPPING CONDUCTION
    KOGAN, SM
    SHKLOVSKII, BI
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1981, 15 (06): : 605 - 611
  • [34] Low Frequency Noise in 2DEG Channel of AlGaN/GaN Heterostructures Scaled to Nanosize Width
    Vitusevich, Svetlana A.
    Petrychuk, Mykhaylo V.
    Sydoruk, Viktor A.
    Schaepers, Thomas
    Hardtdegen, Hilde
    Belyaev, Alexander E.
    Offenhaeusser, Andreas
    Klein, Norbert
    NOISE AND FLUCTUATIONS, 2009, 1129 : 487 - +
  • [35] Low-frequency noise in GaN nanowire transistors
    Rumyantsev, S. L.
    Shur, M. S.
    Levinshtein, M. E.
    Motayed, A.
    Davydov, A. V.
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (06)
  • [36] Low-frequency noise in n-GaN
    N. V. D’yakonova
    M. E. Levinshtein
    S. Contreras
    W. Knap
    B. Beaumont
    P. Gibart
    Semiconductors, 1998, 32 : 257 - 260
  • [37] Low-frequency noise properties of GaN nanowires
    Li, L. C.
    Huang, K. H.
    Suen, Y. W.
    Hsleh, W. H.
    Chen, C. D.
    Lee, M. W.
    Chen, C. C.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 731 - +
  • [38] Low-frequency noise in GaN/GaAlN heterojunctions
    Levinshtein, ME
    Pascal, F
    Contreras, S
    Knap, W
    Rumyantsev, SL
    Gaska, R
    Yang, JW
    Shur, MS
    APPLIED PHYSICS LETTERS, 1998, 72 (23) : 3053 - 3055
  • [39] Low-frequency noise in n-GaN
    D'Yakonova, NV
    Levinshtein, ME
    Contreras, S
    Knap, W
    Beaumont, B
    Gibart, P
    SEMICONDUCTORS, 1998, 32 (03) : 257 - 260
  • [40] Low-Frequency Noise Characterization of Germanium n-Channel FinFETs
    de Oliveira, Alberto, V
    Xie, Duan
    Arimura, Hiroaki
    Boccardi, Guillaume
    Collaert, Nadine
    Claeys, Cor
    Horiguchi, Naoto
    Simoen, Eddy
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (07) : 2872 - 2877