Tetrandrine Alleviates Silica-induced Pulmonary Fibrosis Through PI3K/AKT Pathway: Network Pharmacology Investigation and Experimental Validation

被引:4
|
作者
Ma, Ruimin [1 ,2 ]
Huang, Xiaoxi [3 ]
Sun, Di [1 ]
Wang, Jingwei [1 ]
Xue, Changjiang [1 ]
Ye, Qiao [1 ]
机构
[1] Capital Med Univ, Beijing Chao Yang Hosp, Clin Ctr Interstitial Lung Dis, Beijing Inst Resp Med,Dept Occupat Med & Toxicol, 8 Workers Stadium South Rd, Beijing, Peoples R China
[2] Capital Med Univ, Beijing Friendship Hosp, Dept Resp Med, Beijing, Peoples R China
[3] Capital Med Univ, Beijing Chao Yang Hosp, Beijing Inst Resp Med, Med Res Ctr, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
tetrandrine; silica; network pharmacology; PI3K; AKT; MECHANISM;
D O I
10.1007/s10753-023-01964-6
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid derived from Stephania tetrandra S. Moor, known for its potential use in attenuating the progression of silicosis. However, the precise effects and underlying mechanisms of TET remain controversial. In this study, we aimed to elucidate the pharmacological mechanism of TET using a network pharmacology approach, while also evaluating its effect on silica-induced lung fibrosis in mice and TGF-beta 1-stimulated pulmonary fibroblasts in vitro. We employed network pharmacology to unravel the biological mechanisms through which TET may exert its therapeutic effects on pulmonary fibrosis and silicosis. In a silica-induced mouse model of lung fibrosis, TET was administered orally either during the early or late stage of fibrotic progression. Additionally, we examined the effects of TET on fibroblasts stimulated by TGF-beta 1 in vitro. Through the analysis, we identified a total of 101 targets of TET, 7,851 genes associated with pulmonary fibrosis, and 80 overlapping genes. These genes were primarily associated with key pathways such as epidermal growth factor receptor tyrosine kinase inhibitor resistance, the vascular endothelial growth factor signaling pathway, and the phosphatidylinositol 3 kinase (PI3K)-protein kinase B (PKB or AKT) signaling pathway. Furthermore, molecular docking analysis revealed the binding of TET to AKT1, the catalytic subunit of phosphatidylinositol-3 kinase, and KDR. In vivo experiments demonstrated that TET significantly alleviated silica-induced pulmonary fibrosis and reduced the expression of fibrotic markers. Moreover, TET exhibited inhibitory effects on the migration, proliferation, and differentiation of TGF-beta 1-induced lung fibroblasts in vitro. Notably, TET mitigated silica-induced pulmonary fibrosis by suppressing the PI3K/AKT pathway. In conclusion, our findings suggest that TET possesses the ability to suppress silica-induced pulmonary fibrosis by targeting the PI3K/AKT signaling pathway. These results provide valuable insights into the therapeutic potential of TET in the treatment of pulmonary fibrosis and silicosis.
引用
收藏
页码:1109 / 1126
页数:18
相关论文
共 50 条
  • [41] Agmatine Alleviates Cisplatin-Induced Ototoxicity by Activating PI3K/AKT Signaling Pathway
    Zhang, Ying
    Lv, Zhe
    He, Qiang
    ENEURO, 2022, 9 (02)
  • [42] Hydrogen sulfide ameliorates rat myocardial fibrosis induced by thyroxine through PI3K/AKT signaling pathway
    Liu, Maojun
    Li, Zining
    Liang, Biao
    Li, Ling
    Liu, Shengquan
    Tan, Wenting
    Long, Junrong
    Tang, Fen
    Chu, Chun
    Yang, Jun
    ENDOCRINE JOURNAL, 2018, 65 (07) : 769 - 781
  • [43] Naringin attenuates thioacetamide-induced liver fibrosis in rats through modulation of the PI3K/Akt pathway
    El-Mihi, Kholoud Alaa
    Kenawy, Hany Ibrahim
    El-Karef, Amro
    Elsherbiny, Nehal Mohsen
    Eissa, Laila Ahmed
    LIFE SCIENCES, 2017, 187 : 50 - 57
  • [44] The pathway of PI3K/AKT/mTOR in pulmonary carcinoids.
    Zhang, Zixuan
    Wang, Mengzhao
    JOURNAL OF CLINICAL ONCOLOGY, 2014, 32 (15)
  • [45] Vincristine exerts antiglioma effects by inhibiting the PI3K/AKT signaling pathway: A mechanistic study based on network pharmacology, bioinformatics analysis, and experimental validation
    Chen, Zhihua
    Wang, Jiahong
    He, Ting
    Rao, Donggen
    Wang, Ziyang
    Zhu, Jianming
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024,
  • [46] Metabolomics reveals that chronic restraint stress alleviates carbon tetrachloride-induced hepatic fibrosis through the INSR/PI3K/AKT/AMPK pathway
    Shanshan Zhang
    Binjie Liu
    Lan Huang
    Rong Zhang
    Lin An
    Zhongqiu Liu
    Journal of Molecular Medicine, 2024, 102 : 113 - 128
  • [47] PI3K/AKT/mTOR pathway in pulmonary carcinoid tumours
    Zhang, Zixuan
    Wang, Mengzhao
    ONCOLOGY LETTERS, 2017, 14 (02) : 1373 - 1378
  • [48] Metabolomics reveals that chronic restraint stress alleviates carbon tetrachloride-induced hepatic fibrosis through the INSR/PI3K/AKT/AMPK pathway
    Zhang, Shanshan
    Liu, Binjie
    Huang, Lan
    Zhang, Rong
    An, Lin
    Liu, Zhongqiu
    JOURNAL OF MOLECULAR MEDICINE-JMM, 2024, 102 (01): : 11 - 21
  • [49] Simiao Wan alleviates obesity-associated insulin resistance via PKCε/IRS-1/PI3K/Akt signaling pathway based on network pharmacology analysis and experimental validation
    Jin, Jing
    Xu, Yin-Yue
    Liu, Wen-Ping
    Hu, Ke-Hua
    Xue, Ning
    Zheng, Zu-Guo
    TRADITIONAL MEDICINE RESEARCH, 2023, 8 (10):
  • [50] Fluorofenidone attenuates paraquat-induced pulmonary fibrosis by regulating the PI3K/Akt/mTOR signaling pathway and autophagy
    Jiang, Feiya
    Li, Sha
    Jiang, Yu
    Chen, Zhuo
    Wang, Tongtong
    Liu, Wen
    MOLECULAR MEDICINE REPORTS, 2021, 23 (06)