Quantum Goos-Hänchen switch in graphene junctions

被引:0
|
作者
Zhang, Z. B. [1 ]
Wang, Rui [1 ,2 ,3 ,4 ]
Wang, Baigeng [1 ,2 ,3 ]
Xing, D. Y. [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[4] Hefei Natl Lab, Hefei 230088, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2023年 / 25卷 / 12期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
graphene; quantum transport; p-n junction; Goos-Hanchen effect; BALLISTIC GRAPHENE; DIRAC FERMIONS; ELECTRONS;
D O I
10.1088/1367-2630/ad0eee
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Goos-Hanchen (GH) shift, an interference phenomenon describing the lateral shift of the reflected beam along the interface during total internal reflection, has attracted great interests in the field of quantum transport in two-dimensional materials. In particular, the GH effect generates a novel pseudospin-dependent scattering effect in graphene, which in turn results in an 8e2/h conductance step in the bipolar junctions. Here, we reveal that a barrier region with effective barrier strength chi can greatly enrich the GH effect in graphene junctions. In contrast to the conventional case where the negative shift is allowed only in the p-n junction, the thin barrier enables both negative and positive spatial shifts in pIn and nIn junctions, where I represents the barrier region. More interestingly, the lowest channel degeneracy can be efficiently varied by tuning chi in both the symmetric pInIp and the asymmetric pnIp junctions, leading to a highly controllable switch that switches the conductance between 8e2/h and 4e2/h . These results advance the knowledge of GH effects in electronic materials and suggest experimental avenues for its observation and manipulation.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Interference effect on Goos-Hänchen shifts of anisotropic medium interface
    Li, Zihan
    Chen, Ze
    Li, Yong
    Zhang, Zhihai
    Zhuang, Guoce
    Liu, Jianli
    Meng, Yang
    NEW JOURNAL OF PHYSICS, 2023, 25 (12):
  • [42] Goos-Hänchen effect in epsilon-near-zero metamaterials
    Yadong Xu
    C. T. Chan
    Huanyang Chen
    Scientific Reports, 5
  • [43] Effect of Andreev processes on the Goos–Hänchen (GH) shift in the Graphene–Superconductor–Graphene (GSG) junctions
    Salim, Shahrukh
    Marathe, Rahul
    Ghosh, Sankalpa
    Physica E: Low-Dimensional Systems and Nanostructures, 2024, 156
  • [44] Tunable goos-hänchen shift surface plasmon resonance sensor based on graphene-hBN heterostructure
    Liu Z.
    Lu F.
    Jiang L.
    Lin W.
    Zheng Z.
    Biosensors, 2021, 11 (06):
  • [45] Increase of Goos-Hänchen Shift Based on Exceptional Optical Bound States
    Wu F.
    Wu J.
    Guo Z.
    Sun Y.
    Li Y.
    Jiang H.
    Chen H.
    Guangxue Xuebao/Acta Optica Sinica, 2021, 41 (08):
  • [46] Tunable Goos-Hänchen Shift of Surface Plasmon Beam Due to Graphene in a Metal-Dielectric System
    A. A. Bocharov
    Plasmonics, 2019, 14 : 173 - 178
  • [47] Erratum: Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces
    Venkata Jayasurya Yallapragada
    Ajith P. Ravishankar
    Gajendra L. Mulay
    Girish S. Agarwal
    Venu Gopal Achanta
    Scientific Reports, 6
  • [48] 光在不同界面反射时的Goos-Hnchen位移
    杨绍甫
    白建平
    张耀举
    河南大学学报(自然科学版), 2009, 39 (01) : 22 - 24
  • [49] The Goos-Hänchen shift of wide-angle seismic reflection wave
    FuPing Liu
    XianJun Meng
    JiaQi Xiao
    AnLing Wang
    ChangChun Yang
    Science China Earth Sciences, 2012, 55 : 852 - 857
  • [50] 矩形h BN层状光栅中的Goos-H?nchen位移
    招月
    金高
    周胜
    高师理科学刊, 2023, 43 (11) : 32 - 38