Quantum Goos-Hänchen switch in graphene junctions

被引:0
|
作者
Zhang, Z. B. [1 ]
Wang, Rui [1 ,2 ,3 ,4 ]
Wang, Baigeng [1 ,2 ,3 ]
Xing, D. Y. [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[4] Hefei Natl Lab, Hefei 230088, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2023年 / 25卷 / 12期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
graphene; quantum transport; p-n junction; Goos-Hanchen effect; BALLISTIC GRAPHENE; DIRAC FERMIONS; ELECTRONS;
D O I
10.1088/1367-2630/ad0eee
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Goos-Hanchen (GH) shift, an interference phenomenon describing the lateral shift of the reflected beam along the interface during total internal reflection, has attracted great interests in the field of quantum transport in two-dimensional materials. In particular, the GH effect generates a novel pseudospin-dependent scattering effect in graphene, which in turn results in an 8e2/h conductance step in the bipolar junctions. Here, we reveal that a barrier region with effective barrier strength chi can greatly enrich the GH effect in graphene junctions. In contrast to the conventional case where the negative shift is allowed only in the p-n junction, the thin barrier enables both negative and positive spatial shifts in pIn and nIn junctions, where I represents the barrier region. More interestingly, the lowest channel degeneracy can be efficiently varied by tuning chi in both the symmetric pInIp and the asymmetric pnIp junctions, leading to a highly controllable switch that switches the conductance between 8e2/h and 4e2/h . These results advance the knowledge of GH effects in electronic materials and suggest experimental avenues for its observation and manipulation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Goos-Hänchen shift in bilayer graphene
    M. Cheng
    The European Physical Journal B, 2012, 85
  • [2] Spatial Goos-Hänchen shift in photonic graphene SPATIAL GOOS-HÄNCHEN SHIFT in PHOTONIC GRAPHENE SIMON GROSCHE, ALEXANDER SZAMEIT, and MARCO ORNIGOTTI
    Grosche S.
    Szameit A.
    Ornigotti M.
    2016, American Physical Society (94)
  • [3] Acoustic Goos-Hänchen effect
    Lin Fa
    Ling Xue
    YuXiao Fa
    YongLan Han
    YanDong Zhang
    HongShen Cheng
    PengFei Ding
    GuoHui Li
    ShaoJie Tang
    ChunLing Bai
    BingJie Xi
    XiaoLin Zhang
    MeiShan Zhao
    Science China Physics, Mechanics & Astronomy, 2017, 60
  • [4] Controlling the Goos-Hänchen shift via quantum interference
    Mojtaba Rezaei
    Mostafa Sahrai
    The European Physical Journal D, 2014, 68
  • [5] Acoustic Goos-H?nchen effect
    Lin Fa
    Ling Xue
    YuXiao Fa
    YongLan Han
    YanDong Zhang
    HongShen Cheng
    PengFei Ding
    GuoHui Li
    ShaoJie Tang
    ChunLing Bai
    BingJie Xi
    XiaoLin Zhang
    MeiShan Zhao
    Science China(Physics,Mechanics & Astronomy), 2017, (10) : 21 - 32
  • [6] Impact of the Fizeau drag effect on Goos-Hänchen shifts in graphene
    Din, Rafi Ud
    Shah, Muzamil
    Asgari, Reza
    Gao, Xianlong
    PHYSICAL REVIEW B, 2024, 109 (11)
  • [7] Goos-H?nchen shift at a temporal boundary
    Ponomarenko, Sergey A.
    Zhang, Junchi
    Agrawal, Govind P.
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [8] Electronic Goos-Hänchen shifts in phosphorene
    Majari, Parisa
    Naumis, Gerardo G.
    PHYSICA B-CONDENSED MATTER, 2023, 668
  • [9] Goos-Hänchen shifts on spin representation
    Chen, Ze
    Zhang, Xiaoguang
    Zhang, Hu
    Meng, Yang
    Zhen, Weiming
    NEW JOURNAL OF PHYSICS, 2024, 26 (07):
  • [10] Controlling of Goos-Hänchen shift via biexciton coherence in a quantum dot
    S. H. Asadpour
    R. Nasehi
    M. Mahmoudi
    H. R. Soleimani
    JETP Letters, 2015, 101 : 481 - 488