Flexible magnetoelectric sensor and nonvolatile memory based on magnetization-graded Ni/FSMA/PMN-PT multiferroic heterostructure

被引:15
|
作者
Arora, Diksha [1 ,2 ]
Kumar, Pradeep [1 ,2 ]
Singh, Shalini [3 ]
Goswami, Ankur [3 ]
Kaur, Davinder [1 ,2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Phys, Funct Nanomat Res Lab FNRL, Roorkee 247667, Uttarakhand, India
[2] Indian Inst Technol Roorkee, Ctr Nanotechnol, Roorkee 247667, Uttarakhand, India
[3] Indian Inst Technol Delhi, Dept Mat Sci Engn, New Delhi 110016, India
关键词
PIEZOELECTRICITY;
D O I
10.1063/5.0146498
中图分类号
O59 [应用物理学];
学科分类号
摘要
Flexible multiferroic heterostructures are promising to unveil technological developments in wearable magnetic field sensing, nonvolatile memory, soft robotics, and portable energy harvesters. Here, we report an enhanced and a zero-biased magnetoelectric (ME) effect in flexible, cost-effective, and room temperature sensitive Ni/FSMA/PMN-PT magnetization-graded ME heterostructure. Flexible Ni foil with -q (piezomagnetic coefficient) and the ferromagnetic shape memory alloy (FSMA; Ni-Mn-In) layer with +q offers the desired q-grading. The temperature-dependent dielectric behavior shows an anomaly in the martensite transformation regime of the FSMA layer. The Ni/FSMA/PMN-PT ME heterostructure exhibits noteworthy ME output of & SIM;3.7 V/cm Oe, significantly higher than Ni/PMN-PT (& SIM;1 V/cm Oe). The q-grading-induced bending moment impedes the asymmetry-related flexural strain and strengthens the ME interaction. The zero-bias ME output of & SIM;0.4 V/cm Oe is ascribed to the interaction between q-grading-induced transverse magnetization and AC magnetic field. Ni/Ni-Mn-In/PMN-PT ME heterostructure displays excellent magnetic field sensing parameters: correlation coefficient, sensitivity, inaccuracy, and hysteresis of 0.99916, & SIM;0.74 mV/Oe, 1.5% full-scale output (FSO), and 1.8% FSO, respectively. The reversible and repeatable nonvolatile switching of the ME coefficient obtained with positive and negative electric fields is useful for next-generation memory devices. The flexible ME heterostructure shows no degradation in performance up to 1500 bending cycles. Such Ni/FSMA/PMN-PT based ME heterostructures are propitious for multifunctional flexible magnetic field sensors and nonvolatile memory applications.
引用
收藏
页数:8
相关论文
共 26 条
  • [21] Effect field controlled magnetization in NiFe2O4/SrRuO3/PMN-PT heterostructures for nonvolatile memory applications: XMCD study
    Ahlawat, Anju
    Khan, Azam Ali
    Deshmukh, Pratik
    Shirolkar, M. M.
    Satapathy, S.
    Choudhary, R. J.
    Phase, D. M.
    APPLIED PHYSICS LETTERS, 2021, 119 (11)
  • [22] Multifunctional Resistive Switching in a Magnetization-Graded Ni/NiMnIn/V2O5 Flexible Heterostructure toward Brain-Inspired Neuromorphic Computing
    Kaushlendra, Kumar
    Kaur, Davinder
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (06) : 4548 - 4559
  • [23] Quantifying electric-field control of magnetization rotation in Ni/SiO2/Ti/(011)-PMN-PT multiferroic heterostructures via anisotropic magnetoresistance measurements
    Yang, Zhi
    MATERIALS LETTERS, 2018, 229 : 375 - 376
  • [24] Quantifying electric-field control of magnetization rotation in Ni/SiO2/Ti/(011)-PMN-PT multiferroic heterostructures via anisotropic magnetoresistance measurements
    Hong, Bin
    Yang, Yuanjun
    Zhao, Jiangtao
    Hu, Kai
    Peng, Jinlan
    Zhang, Haibin
    Liu, Wen
    Luo, Zhenlin
    Huang, Haoliang
    Li, Xiaoguang
    Gao, Chen
    MATERIALS LETTERS, 2016, 169 : 110 - 113
  • [25] Smart hybrid sensor for magnetic field and vibration detection based on PMN-PT/Terfenol-D magnetoelectric composites and suspended magnetic vibrator
    Hu, Lizhi
    Wu, Hanzhou
    You, Haoran
    Wang, Yaojin
    Gao, Anran
    SENSORS AND ACTUATORS A-PHYSICAL, 2021, 332
  • [26] Magnetic-Field-Assisted Electric-Field-Induced Domain Switching of a Magnetic Single Domain in a Multiferroic/Magnetoelectric Ni Nanochevron/[Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (PMN-PT) Layered Structure
    Cheng, Chih-Cheng
    Chen, Yu-Jen
    Lin, Shin-Hung
    Wang, Hsin-Min
    Lin, Guang-Ping
    Chung, Tien-Kan
    MICROMACHINES, 2024, 15 (01)