A Deep Reinforcement Learning Approach for Competitive Task Assignment in Enterprise Blockchain

被引:1
|
作者
Volpe, Gaetano [1 ]
Mangini, Agostino Marcello [1 ]
Fanti, Maria Pia [1 ]
机构
[1] Polytech Univ Bari, Dept Elect & Informat Engn, I-70125 Bari, Italy
关键词
Blockchain; cloud; deep reinforcement learning (DRL); resource sharing; CLASSIFICATION; TIME;
D O I
10.1109/ACCESS.2023.3276859
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the advent of Industry 4.0, the demand of high computing power for tasks such as data mining, 3D rendering, file conversion and cryptography is continuously growing. To this extent, distributed and decentralized environments play a fundamental role by dramatically increasing the amount of available resources. However, there are still several issues in the existing resource sharing solutions, such as the uncertainty of task running time, the renting price and the security of transactions. In this work, we present a blockchain-enabled task assignment platform by performance prediction based on Hyperledger Fabric, an open-source solution for private and permissioned blockchains in enterprise contexts that outperforms other technologies in terms of modularity, security and performance. We propose a model-free deep reinforcement learning framework to predict task runtime in agents current load state while the agent is engaged in multiple concurrent tasks. In addition, we let clients choose between prediction accuracy and price saving on each request. This way, we implicitly give inaccurate agents a chance to get assignments by competing in price rather than in time, allowing them to collect new experiences and improve future predictions. We conduct extensive experiments to evaluate the performance of the proposed scheme.
引用
收藏
页码:48236 / 48247
页数:12
相关论文
共 50 条
  • [21] Adaptive Sharding for UAV Networks: A Deep Reinforcement Learning Approach to Blockchain Optimization
    Lu, Kaiyin
    Zhang, Xinguang
    Zhai, Tianbo
    Zhou, Mengjie
    SENSORS, 2024, 24 (22)
  • [22] Prediction of Bitcoin Prices Based on Blockchain Information: A Deep Reinforcement Learning Approach
    Khadija, Mnasri
    Fahmi, Ben Rejab
    Syrine, Ben Romdhane
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, 2024, 4 (03): : 2416 - 2433
  • [23] Blockchain-Enabled Computing Resource Trading: A Deep Reinforcement Learning Approach
    Xie, Zixuan
    Wu, Run
    Hu, Miao
    Tian, Haibo
    2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2020,
  • [24] A Novel Deep Reinforcement Learning Approach for Task Offloading in MEC Systems
    Liu, Xiaowei
    Jiang, Shuwen
    Wu, Yi
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [25] A deep reinforcement learning approach for dynamic task scheduling of flight tests
    Tian, Bei
    Xiao, Gang
    Shen, Yu
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (13): : 18761 - 18796
  • [26] A Deep Reinforcement Learning Approach to the Optimization of Data Center Task Scheduling
    Che, Haiying
    Bai, Zixing
    Zuo, Rong
    Li, Honglei
    COMPLEXITY, 2020, 2020
  • [27] Secure Task Offloading in Blockchain-Enabled Mobile Edge Computing With Deep Reinforcement Learning
    Samy, Ahmed
    Elgendy, Ibrahim A.
    Yu, Haining
    Zhang, Weizhe
    Zhang, Hongli
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 4872 - 4887
  • [28] Cooperative task assignment in spatial crowdsourcing via multi-agent deep reinforcement learning?
    Zhao, Pengcheng
    Li, Xiang
    Gao, Shang
    Wei, Xiaohui
    JOURNAL OF SYSTEMS ARCHITECTURE, 2022, 128
  • [29] A Hybrid Multi-Task Learning Approach for Optimizing Deep Reinforcement Learning Agents
    Varghese, Nelson Vithayathil
    Mahmoud, Qusay H.
    IEEE ACCESS, 2021, 9 : 44681 - 44703
  • [30] Blockchain-Enabled Deep Reinforcement Learning Approach for Performance Optimization on the Internet of Things
    Tanweer Alam
    Wireless Personal Communications, 2022, 126 : 995 - 1011