Strong and weak convergence theorems for solutions of equations of Hammerstein-type

被引:0
|
作者
Ofoedu, Eric U. [1 ]
Osigwe, Chimezie B. [1 ]
Ibeh, Kingsley O. [1 ]
Madu, Lovelyn O. [1 ,2 ]
机构
[1] Nnamdi Azikiwe Univ, Dept Math, Awka, Anambra, Nigeria
[2] Univ Louisiana, Lafayette, IN USA
关键词
Fixed Point Problem; Hilbert Space; Monotone Mappings; Variational Inequality Problem; Iterative Approximation Method; NONLINEAR INTEGRAL-EQUATIONS; MONOTONE-OPERATORS;
D O I
10.2298/FIL2302477O
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, it is our aim in this paper to introduce a new iterative algorithm for approximation of a solution of an equation of Hammerstein-type. The proposed scheme does not involve computation of inverse of operators under study; it does not involve passing through computation of a certain set that must contain a solution of the equation of Hammerstein-type before convergence takes place. The proposed scheme requires only one parameter satisfying verifiable mild conditions. Moreover, the mappings involved are neither defined on compact subset of the space under study, nor assumed to be angle bounded. Our theorems complement several results that have been obtained in this direction.
引用
收藏
页码:477 / 490
页数:14
相关论文
共 50 条
  • [21] Method for the Numerical Solution of Certain Hammerstein-Type Integral Equations.
    Sablonniere, Paul
    Revue Francaise d'Automatique Informatique Recherche Operationnelle, 1975, 9 R-1 : 105 - 118
  • [22] Kurchatov-type methods for non-differentiable Hammerstein-type integral equations
    M.A. Hernández-Verón
    Nisha Yadav
    Eulalia Martínez
    Sukhjit Singh
    Numerical Algorithms, 2023, 93 : 131 - 155
  • [23] WEAK AND STRONG CONVERGENCE OF SOLUTIONS TO LINEARIZED EQUATIONS OF LOW COMPRESSIBLE FLUID
    Gusev, N. A.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2011, (01): : 47 - 52
  • [24] Weak and strong convergence theorems for nonspreading-type mappings in Hilbert spaces
    Osilike, M. O.
    Isiogugu, F. O.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) : 1814 - 1822
  • [25] PERIODIC OPTIMIZATION OF HAMMERSTEIN-TYPE SYSTEMS
    VALKO, P
    ALMASY, GA
    AUTOMATICA, 1982, 18 (02) : 245 - 248
  • [26] Solvability of Coupled Systems of Generalized Hammerstein-Type Integral Equations in the Real Line
    Minhos, Feliz
    de Sousa, Robert
    MATHEMATICS, 2020, 8 (01)
  • [27] Blow-up behavior of Hammerstein-type delay Volterra integral equations
    Zhanwen Yang
    Hermann Brunner
    Frontiers of Mathematics in China, 2013, 8 : 261 - 280
  • [28] Coupled systems of Hammerstein-type integral equations with sign-changing kernels
    de Sousa, Robert
    Minhos, Feliz
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 50 : 469 - 483
  • [29] Blow-up behavior of Hammerstein-type delay Volterra integral equations
    Yang, Zhanwen
    Brunner, Hermann
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (02) : 261 - 280
  • [30] Kurchatov-type methods for non-differentiable Hammerstein-type integral equations
    Hernandez-Veron, M. A.
    Yadav, Nisha
    Martinez, Eulalia
    Singh, Sukhjit
    NUMERICAL ALGORITHMS, 2023, 93 (01) : 131 - 155