Tungsten doped diamond shells for record neutron yield inertial confinement fusion experiments at the National Ignition Facility

被引:15
|
作者
Braun, T. [1 ]
Kucheyev, S. O. [1 ]
Shin, S. J. [1 ]
Wang, Y. M. [2 ]
Ye, J. [1 ]
Teslich, N. E., Jr. [1 ]
Saw, C. K. [1 ]
Bober, D. B. [1 ]
Sedillo, E. M. [1 ]
Rice, N. G. [3 ]
Sequoia, K. [3 ]
Huang, H. [3 ]
Requieron, W. [3 ]
Nikroo, A. [1 ]
Ho, D. D. [1 ]
Haan, S. W. [1 ]
Hamza, A. V. [1 ]
Wild, C. [4 ]
Biener, J. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA USA
[3] Gen Atom, San Diego, CA USA
[4] Diamond Mat GmbH, Hans Bunte Str 19, D-79108 Freiburg, Germany
关键词
diamond; chemical vapor deposition; doping; ablator; inertial confinement fusion; PHYSICS BASIS; ICF; SIMULATIONS; DOPANT; FILMS;
D O I
10.1088/1741-4326/aca4e4
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report on fabrication and characterization of layered, tungsten doped, spherical about 2 mm diameter microcrystalline diamond ablator shells for inertial confinement fusion (ICF) experiments at the National Ignition Facility. As previously reported, diamond ICF ablator shells can be fabricated by chemical vapor deposition (CVD) on solid spherical silicon mandrels using an ellipsoidal microwave plasma reactor. In the present work, we further developed these ablator shells by embedding a W-doped diamond layer sandwiched between two undoped diamond regions. W incorporation in diamond was achieved by adding tungsten hexacarbonyl to the CH4/H-2 CVD feed gas. We observe that the W doping concentration decreases with increasing deposition rate which, in turn, is controlled by adjusting the total gas pressure. Cross sectional microstructural analysis reveals sharp interfaces between doped and undoped regions of the diamond shell and uniform W distribution with concentrations up to about 0.3 at.%. At higher W concentrations (>0.3 at.%) formation of tungsten carbide precipitates is observed. Using a 3-shock 1.6 MJ laser pulse, the targets described in this work produced the first laser driven implosion to break the 1 x 10(16) neutron yield barrier, followed by experiments (described in future publications) with similar targets and slightly more laser energy producing yields as high as 4 x 10(17).
引用
收藏
页数:10
相关论文
共 50 条
  • [31] View factor estimation of hot spot velocities in inertial confinement fusion implosions at the National Ignition Facility
    Young, C., V
    Masse, L.
    Casey, D. T.
    MacGowan, B. J.
    Landen, O. L.
    Callahan, D. A.
    Meezan, N. B.
    Nora, R.
    Patel, P. K.
    PHYSICS OF PLASMAS, 2020, 27 (08)
  • [32] High yield polar direct drive fusion neutron sources at the National Ignition Facility
    Yeamans, C. B.
    Kemp, G. E.
    Walters, Z. B.
    Whitley, H. D.
    McKenty, P. W.
    Garcia, E. M.
    Yang, Y.
    Craxton, R. S.
    Blue, B. E.
    NUCLEAR FUSION, 2021, 61 (04)
  • [33] CONTRIBUTIONS OF THE NATIONAL IGNITION FACILITY TO THE DEVELOPMENT OF INERTIAL FUSION ENERGY
    TOBIN, M
    LOGAN, G
    DELARUBIA, TD
    SCHROCK, V
    SCHULZ, K
    TOKHEIM, R
    ABDOU, M
    BANGERTER, R
    FUSION ENGINEERING AND DESIGN, 1995, 29 : 3 - 17
  • [34] Status of the US Inertial Fusion Program and the National Ignition Facility
    Crandall, DH
    LASER INTERACTION AND RELATED PLASMA PHENOMENA - 13TH INTERNATIONAL CONFERENCE, 1997, (406): : 45 - 47
  • [35] Progress on neutron pinhole imaging for inertial confinement fusion experiments
    Grim, GP
    Morgan, GL
    Wilke, MD
    Gobby, PL
    Christensen, CR
    Wilson, DC
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (10): : 3572 - 3574
  • [36] Development of a neutron imaging diagnostic for inertial confinement fusion experiments
    Morgan, GL
    Berggren, RR
    Bradley, PA
    Cverna, FH
    Faulkner, JR
    Gobby, PL
    Oertel, JA
    Swenson, FJ
    Tegtmeier, JA
    Walton, RB
    Wilke, MD
    Wilson, DC
    Disdier, L
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (01): : 865 - 868
  • [37] Initial experiments on the shock-ignition inertial confinement fusion concept
    Theobald, W.
    Betti, R.
    Stoeckl, C.
    Anderson, K. S.
    Delettrez, J. A.
    Glebov, V. Yu.
    Goncharov, V. N.
    Marshall, F. J.
    Maywar, D. N.
    McCrory, R. L.
    Meyerhofer, D. D.
    Radha, P. B.
    Sangster, T. C.
    Seka, W.
    Shvarts, D.
    Smalyuk, V. A.
    Solodov, A. A.
    Yaakobi, B.
    Zhou, C. D.
    Frenje, J. A.
    Li, C. K.
    Seguin, F. H.
    Petrasso, R. D.
    Perkins, L. J.
    PHYSICS OF PLASMAS, 2008, 15 (05)
  • [38] Optimizing neutron imaging line of sight locations for maximizing sampling of the cold fuel density in inertial confinement fusion implosions at the National Ignition Facility
    Batha, S. H.
    Volegov, P. L.
    Fatherley, V. E.
    Geppert-Kleinrath, V.
    Wilde, C. H.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (10):
  • [39] High resolution neutron imaging for inertial confinement fusion experiments
    Landoas, Olivier
    Disdier, L.
    Caillaud, T.
    Thfoin, I.
    Bourgade, Jean-Luc
    Rosse, B.
    Sangster, T. Craig
    Glebov, Vladimir Yu.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [40] Observation of strong electromagnetic fields around laser-entrance holes of ignition-scale hohlraums in inertial-confinement fusion experiments at the National Ignition Facility
    Li, C. K.
    Zylstra, A. B.
    Frenje, J. A.
    Seguin, F. H.
    Sinenian, N.
    Petrasso, R. D.
    Amendt, P. A.
    Bionta, R.
    Friedrich, S.
    Collins, G. W.
    Dewald, E.
    Doeppner, T.
    Glenzer, S. H.
    Hicks, D. G.
    Landen, O. L.
    Kilkenny, J. D.
    Mackinnon, A. J.
    Meezan, N.
    Ralph, J.
    Rygg, J. R.
    Kline, J.
    Kyrala, G.
    NEW JOURNAL OF PHYSICS, 2013, 15