Tungsten doped diamond shells for record neutron yield inertial confinement fusion experiments at the National Ignition Facility

被引:15
|
作者
Braun, T. [1 ]
Kucheyev, S. O. [1 ]
Shin, S. J. [1 ]
Wang, Y. M. [2 ]
Ye, J. [1 ]
Teslich, N. E., Jr. [1 ]
Saw, C. K. [1 ]
Bober, D. B. [1 ]
Sedillo, E. M. [1 ]
Rice, N. G. [3 ]
Sequoia, K. [3 ]
Huang, H. [3 ]
Requieron, W. [3 ]
Nikroo, A. [1 ]
Ho, D. D. [1 ]
Haan, S. W. [1 ]
Hamza, A. V. [1 ]
Wild, C. [4 ]
Biener, J. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA USA
[3] Gen Atom, San Diego, CA USA
[4] Diamond Mat GmbH, Hans Bunte Str 19, D-79108 Freiburg, Germany
关键词
diamond; chemical vapor deposition; doping; ablator; inertial confinement fusion; PHYSICS BASIS; ICF; SIMULATIONS; DOPANT; FILMS;
D O I
10.1088/1741-4326/aca4e4
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report on fabrication and characterization of layered, tungsten doped, spherical about 2 mm diameter microcrystalline diamond ablator shells for inertial confinement fusion (ICF) experiments at the National Ignition Facility. As previously reported, diamond ICF ablator shells can be fabricated by chemical vapor deposition (CVD) on solid spherical silicon mandrels using an ellipsoidal microwave plasma reactor. In the present work, we further developed these ablator shells by embedding a W-doped diamond layer sandwiched between two undoped diamond regions. W incorporation in diamond was achieved by adding tungsten hexacarbonyl to the CH4/H-2 CVD feed gas. We observe that the W doping concentration decreases with increasing deposition rate which, in turn, is controlled by adjusting the total gas pressure. Cross sectional microstructural analysis reveals sharp interfaces between doped and undoped regions of the diamond shell and uniform W distribution with concentrations up to about 0.3 at.%. At higher W concentrations (>0.3 at.%) formation of tungsten carbide precipitates is observed. Using a 3-shock 1.6 MJ laser pulse, the targets described in this work produced the first laser driven implosion to break the 1 x 10(16) neutron yield barrier, followed by experiments (described in future publications) with similar targets and slightly more laser energy producing yields as high as 4 x 10(17).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility
    Guler, Nevzat
    Aragonez, Robert J.
    Archuleta, Thomas N.
    Batha, Steven H.
    Clark, David D.
    Clark, Deborah J.
    Danly, Chris R.
    Day, Robert D.
    Fatherley, Valerie E.
    Finch, Joshua P.
    Gallegos, Robert A.
    Garcia, Felix P.
    Grim, Gary
    Hsu, Albert H.
    Jaramillo, Steven A.
    Loomis, Eric N.
    Mares, Danielle
    Martinson, Drew D.
    Merrill, Frank E.
    Morgan, George L.
    Munson, Carter
    Murphy, Thomas J.
    Oertel, John A.
    Polk, Paul J.
    Schmidt, Derek W.
    Tregillis, Ian L.
    Valdez, Adelaida C.
    Volegov, Petr L.
    Wang, Tai-Sen F.
    Wilde, Carl H.
    Wilke, Mark D.
    Wilson, Douglas C.
    Atkinson, Dennis P.
    Bower, Dan E.
    Drury, Owen B.
    Dzenitis, John M.
    Felker, Brian
    Fittinghoff, David N.
    Frank, Matthias
    Liddick, Sean N.
    Moran, Michael J.
    Roberson, George P.
    Weiss, Paul
    Buckles, Robert A.
    Cradick, Jerry R.
    Kaufman, Morris I.
    Lutz, Steve S.
    Malone, Robert M.
    Traille, Albert
    IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59
  • [2] Ignition and Inertial Confinement Fusion at The National Ignition Facility
    Moses, Edward I.
    SIXTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, PARTS 1-4, 2010, 244
  • [3] The National Ignition Facility for inertial confinement fusion
    Paisner, JA
    Murray, JR
    17TH IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, VOLS 1 AND 2, 1998, : 57 - 62
  • [4] Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition Facility
    Patel, P. K.
    Springer, P. T.
    Weber, C. R.
    Jarrott, L. C.
    Hurricane, A.
    Bachmann, B.
    Baker, K. L.
    Hopkins, L. F. Berzak
    Callahan, D. A.
    Casey, D. T.
    Cerjan, C. J.
    Clark, D. S.
    Dewald, E. L.
    Divol, L.
    Doppner, T.
    Field, J. E.
    Fittinghoff, D.
    Gaffney, J.
    Geppert-Kleinrath, V
    Grim, G. P.
    Hartouni, E. P.
    Hatarik, P.
    Hinkel, D. E.
    Hohenberger, M.
    Humbird, K.
    Lzumi, N.
    Jones, S.
    Khan, S. F.
    Kritcher, A. L.
    Kruse, M.
    Landen, O. L.
    Le Pape, S.
    Ma, T.
    MacLaren, S. A.
    MacPhee, A. G.
    Masse, L. P.
    Meezan, N. B.
    Milovich, J. L.
    Nora, R.
    Pak, A.
    Peterson, J. L.
    Ralph, J.
    Robey, H. F.
    Salmonson, J. D.
    Smalyuk, V. A.
    Spears, B. K.
    Thomas, C. A.
    Volegov, P. L.
    Zylstra, A.
    Edwards, M. J.
    PHYSICS OF PLASMAS, 2020, 27 (05)
  • [5] Inertial confinement fusion ignition achieved at the National Ignition Facility - an editorial
    Danson, C. N.
    Gizzi, L. A.
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2023, 11
  • [6] Inertial confinement fusion ignition achieved at the National Ignition Facility–an editorial
    C.N.Danson
    L.A.Gizzi
    High Power Laser Science and Engineering, 2023, 11 (03) : 77 - 79
  • [7] Foam-lined hohlraum, inertial confinement fusion experiments on the National Ignition Facility
    Moore, A. S.
    Meezan, N. B.
    Milovich, J.
    Johnson, S.
    Heredia, R.
    Baumann, T. F.
    Biener, M.
    Bhandarkar, S. D.
    Chen, H.
    Divol, L.
    Izumi, N.
    Nikroo, A.
    Baker, K.
    Jones, O.
    Landen, O. L.
    Hsing, W. W.
    Moody, J. D.
    Thomas, C. A.
    Lahmann, B.
    Williams, J.
    Alfonso, N.
    Schoff, M. E.
    PHYSICAL REVIEW E, 2020, 102 (05)
  • [8] Advances in inertial confinement fusion at the National Ignition Facility (NIF)
    Moses, Edward I.
    FUSION ENGINEERING AND DESIGN, 2010, 85 (7-9) : 983 - 986
  • [9] Inertial confinement fusion target insertion concepts for the national ignition facility
    General Atomics, San Diego, CA, United States
    Fusion Technol, 3 (471-474):
  • [10] Inertial Confinement Fusion target insertion concepts for the National Ignition Facility
    Laughon, GJ
    Schultz, KR
    FUSION TECHNOLOGY, 1996, 30 (03): : 471 - 474