Multi-Feature Decision Fusion Network for Heart Sound Abnormality Detection and Classification

被引:1
|
作者
Zhang, Haobo [1 ,2 ]
Zhang, Peng [1 ,2 ]
Wang, Zhiwei [1 ,2 ]
Chao, Lianying [1 ,2 ]
Chen, Yuting [1 ,2 ]
Li, Qiang [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Collaborat Innovat Ctr Biomed Engn, Sch Engn Sci, MoE Key Lab Biomed Photon, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Heart; Feature extraction; Recording; Bioinformatics; Task analysis; Data augmentation; Convolution; Heart sound; deep learning; abnormality detection; cardiac diseases classification; ARTIFICIAL NEURAL-NETWORK; SEGMENTATION; ENSEMBLE; PATTERN;
D O I
10.1109/JBHI.2023.3307870
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The heart sound reflects the movement status of the cardiovascular system and contains the early pathological information of cardiovascular diseases. Automatic heart sound diagnosis plays an essential role in the early detection of cardiovascular diseases. In this study, we aim to develop a novel end-to-end heart sound abnormality detection and classification method, which can be adapted to different heart sound diagnosis tasks. Specifically, we developed a Multi-feature Decision Fusion Network (MDFNet) composed of a Multi-dimensional Feature Extraction (MFE) module and a Multi-dimensional Decision Fusion (MDF) module. The MFE module extracted spatial features, multi-level temporal features and spatial-temporal fusion features to learn heart sound characteristics from multiple perspectives. Through deep supervision and decision fusion, the MDF module made the multi-dimensional features extracted by the MFE module more discriminative, and fused the decision results of multi-dimensional features to integrate complementary information. Furthermore, attention modules were embedded in the MDFNet to emphasize the fundamental heart sounds containing effective feature information. Finally, we proposed an efficient data augmentation method to circumvent the diagnosis performance degradation caused by the lack of cardiac cycle segmentation in other end-to-end methods. The developed method achieved an overall accuracy of 94.44% and a F1-score of 86.90% on the binary classification task and a F1-score of 99.30% on the five-classification task. Our method outperformed other state-of-the-art methods and had good clinical application prospects.
引用
收藏
页码:1386 / 1397
页数:12
相关论文
共 50 条
  • [41] Lightweight Deepfake Detection Based on Multi-Feature Fusion
    Yasir, Siddiqui Muhammad
    Kim, Hyun
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [42] Multi-feature fusion for snowy traffic sign detection
    Wang, Zhanyu
    Liu, Lintao
    Du, Xuejing
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (05)
  • [43] Tiny Object Detection using Multi-feature Fusion
    Yang, Peng
    Zhao, Yuejin
    Liu, Ming
    Dong, Liquan
    Liu, Xiaohua
    Hui, Mei
    MIPPR 2019: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2020, 11429
  • [44] Multi-feature decomposition and transformer-fusion: an infrared and visible image fusion network based on multi-feature decomposition and transformer
    Li, Xujun
    Duan, Zhicheng
    Chang, Jia
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (06)
  • [45] Alzheimer's Disease Classification Based on Multi-feature Fusion
    Madusanka, Nuwan
    Choi, Heung-Kook
    So, Jae-Hong
    Choi, Boo-Kyeong
    CURRENT MEDICAL IMAGING REVIEWS, 2019, 15 (02) : 161 - 169
  • [46] A lightweight multi-feature fusion structure for automatic modulation classification
    Li, Zhigang
    Zhang, Wentao
    Wang, Yutong
    Li, Shujie
    Sun, Xiaochuan
    PHYSICAL COMMUNICATION, 2023, 61
  • [47] BiTCN malware classification method based on multi-feature fusion
    Xuan, Bona
    Li, Jin
    Song, Yafei
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 359 - 364
  • [48] Target classification with adaptive weights based on multi-feature fusion
    Wang L.
    Zhang Z.
    Su L.
    Nie W.
    1600, Huazhong University of Science and Technology (48): : 38 - 43
  • [49] Multi-feature structure fusion of contours for unsupervised shape classification
    Lin, Guangfeng
    Zhu, Hong
    Rang, Xiaobing
    Fan, Caixia
    Zhang, Erhu
    PATTERN RECOGNITION LETTERS, 2013, 34 (11) : 1286 - 1290
  • [50] A GLASS IMAGE CLASSIFICATION METHOD BASED ON MULTI-FEATURE FUSION
    Zhang, Liang
    Wen, Jing
    Xu, Sheng-Zhou
    Xing, Hao-Yang
    Zhu, Yu
    Chen, Heng-Xin
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2016, : 7 - 11