On a class of homeomorphisms of function spaces preserving the Lindelof number of domains

被引:0
|
作者
Lazarev, Vadim R. [1 ]
机构
[1] Tomsk State Univ, Dept Math Anal & Theory Funct, Fac Mech & Math, Tomsk, Russia
关键词
Lindelof number; function space; pointwise convergence topology; finite support property;
D O I
10.17223/19988621/86/12
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider the class of all homeomorphisms between the function spaces of the form C-p(X), C-p(Y) such that the images of Y and X under their dual and, respectively, inverse dual mappings consist of finitely supported functionals. We prove that if a homeomorphism belongs to this class, then Lindelof numbers l(X) and l(Y) are equal. This result generalizes the known theorem of A. Bouziad for linear homeomorphisms of function spaces.
引用
收藏
页码:159 / 166
页数:8
相关论文
共 50 条
  • [31] Hardy spaces for a class of singular domains
    Gallagher, A. -K.
    Gupta, P.
    Lanzani, L.
    Vivas, L.
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (3-4) : 2171 - 2197
  • [32] Maximal classes of spaces and domains determined by topologies on function spaces of domains
    Xi, Xiaoyong
    Liu, Han
    Ho, Weng Kin
    Zhao, Dongsheng
    TOPOLOGY AND ITS APPLICATIONS, 2017, 222 : 278 - 292
  • [33] On the weak finite support property of homeomorphisms of function spaces on ordinals
    Lazarev, Vadim
    TOPOLOGY AND ITS APPLICATIONS, 2020, 275
  • [34] Linear homeomorphisms of function spaces and the position of a space in its compactification
    Krupski, Mikolaj
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (06): : 2151 - 2172
  • [35] Quasiconformality, homeomorphisms between metric measure spaces preserving quasiminimizers, and uniform density property
    Korte, Riikka
    Marola, Niko
    Shanmugalingam, Nageswari
    ARKIV FOR MATEMATIK, 2012, 50 (01): : 111 - 134
  • [36] ON THE CLASS OF ALL SPACES OF WEIGHT NOT GREATER THAN OMEGA-1 WHOSE CARTESIAN PRODUCT WITH EVERY LINDELOF SPACE IS LINDELOF
    ALSTER, K
    FUNDAMENTA MATHEMATICAE, 1988, 129 (02) : 133 - 140
  • [37] Diameter preserving maps on function spaces
    Hosseini, Maliheh
    Font, Juan J.
    POSITIVITY, 2017, 21 (03) : 875 - 883
  • [38] Diameter preserving maps on function spaces
    Maliheh Hosseini
    Juan J. Font
    Positivity, 2017, 21 : 875 - 883
  • [39] A note on function spaces in rough domains
    Triebel, Hans
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 293 (01) : 338 - 342
  • [40] A note on function spaces in rough domains
    Hans Triebel
    Proceedings of the Steklov Institute of Mathematics, 2016, 293 : 338 - 342