An attention-based temporal convolutional network method for predicting remaining useful life of aero-engine

被引:35
|
作者
Zhang, Qiang [1 ]
Liu, Qiong [1 ]
Ye, Qin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
关键词
Remaining useful life prediction; Temporal convolutional network; Attention mechanism; NEURAL-NETWORK;
D O I
10.1016/j.engappai.2023.107241
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Researches on Remaining Useful Life (RUL) prediction of aero-engine could help to make maintenance plans, improve operation reliabilities and reduce maintenance costs. While deep learning methods have been widely used in RUL prediction research, most deep learning-based RUL prediction methods tend to treat input features as equally important. Contributions of different channels and time steps from input features are not considered simultaneously, which will inevitably affect efficiencies and accuracies of RUL prediction. Therefore, a novel deep learning-based RUL prediction method named attention-based temporal convolutional network (ATCN) is proposed in this article. First, an improved self-attention mechanism is used to weight contributions of different time steps from input features. Input features of time steps closely related to RUL are enhanced by the improved self-attention mechanism, which could improve efficiencies of feature extraction in a network. Then, a temporal convolutional network is constructed to capture long-term dependent information and extract feature representations from weighted features of the improved self-attention mechanism. Next, a squeeze-and-excitation mechanism is adopted to weight contributions of different channels from feature representations, which could help to improve prediction accuracies of the network. Finally, a fully connected layer is constructed to fuse weighted features to output RUL values. A commercial modular aero-propulsion system simulation (C-MAPSS) dataset from NASA is applied to verify effects of the proposed method. Performances of the proposed method are compared with those based on different neural network architectures, such as CNN, RNN, LSTM, DCNN, TCN, BiGRU-TSAM, AGCNN and channel attention plus Transformer. Results show that the proposed method could yield results with higher accuracy for RUL prediction of aero-engine than other methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A dual path hybrid neural network framework for remaining useful life prediction of aero-engine
    Lu, Xinhua
    Pan, Haobo
    Zhang, Lingxiao
    Ma, Li
    Wan, Hui
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (04) : 1795 - 1810
  • [32] Comprehensive Dynamic Structure Graph Neural Network for Aero-Engine Remaining Useful Life Prediction
    Wang, Hongfei
    Zhang, Zhuo
    Li, Xiang
    Deng, Xinyang
    Jiang, Wen
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [33] Improved GRU-based self-attention optimization algorithm for aero-engine remaining useful life prediction
    Guo, Xiaojing
    Xu, Xiaohui
    Guo, Jiahao
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2024, 39 (12):
  • [34] Spatial attention-based convolutional transformer for bearing remaining useful life prediction
    Chen, Chong
    Wang, Tao
    Liu, Ying
    Cheng, Lianglun
    Qin, Jian
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (11)
  • [35] Temporal Convolutional Network with Attention Mechanism for Bearing Remaining Useful Life Prediction
    Wang, Shuai
    Zhang, Chao
    Lv, Da
    Zhao, Wentao
    PROCEEDINGS OF TEPEN 2022, 2023, 129 : 391 - 400
  • [36] A global attention based gated temporal convolutional network for machine remaining useful life prediction
    Xu, Xinyao
    Zhou, Xiaolei
    Fan, Qiang
    Yan, Hao
    Wang, Fangxiao
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 260
  • [37] Remaining useful life prediction of multi-stage aero-engine based on super statistics
    Liu J.
    Hu D.
    Pan C.
    Lei F.
    Zhao Q.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (01): : 56 - 64
  • [38] Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE
    Zhang, Yong
    Xin, Yuqi
    Liu, Zhi-wei
    Chi, Ming
    Ma, Guijun
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 220
  • [39] Multiscale BLS-Based Lightweight Prediction Model for Remaining Useful Life of Aero-Engine
    Xu, Tiantian
    Han, Guangjie
    Zhu, Hongbo
    Lin, Chuan
    Peng, Jinlin
    IEEE TRANSACTIONS ON RELIABILITY, 2024, 73 (04) : 1 - 11
  • [40] Aero-Engine Remaining Useful Life Estimation Based on CAE-TCN Neural Networks
    Ren, Guanghao
    Wang, Yun
    Shi, Zhenyun
    Zhang, Guigang
    Jin, Feng
    Wang, Jian
    APPLIED SCIENCES-BASEL, 2023, 13 (01):